Skip to main content
Log in

Quantum qualitative dynamics

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We describe our work on qualitative methods for visualizing the quantum eigenstates of systems with nonlinear classical dynamics. For two-degree-of-freedom systems, our approach is based on the use of generalized coherent states, and allows systems with nonoscillator kinematics to be investigated. The general approach is illustrated with two examples involving vibration-rotation interaction in polyatomic molecules. We apply the coherent states of the Lie groupH 4SU(2) to define quantum surfaces of section for a model involving centrifugal coupling of a harmonic bend with molecular rotation, andSU(2)⊗SU(2) coherent states to study two harmonic normal modes coupled to overall molecular rotation through coriolis interaction. In both systems, quantum states are visualized on the rotational surface of section and compared with the corresponding classical phase space structure. Striking classical-quantum correspondence is observed. We then describe recent results on the quantum states of (N⩾ 3)-dimensional systems of coupled nonlinear oscillators, which reveal a quantum delocalization that is reminiscent of classical Arnold diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Abraham and J. E. Marsden,Foundations of Mechanics (Addison-Wesley, 1985).

  2. E. T. Whittaker,A Treatise on the Analytical Dynamics of Particle and Rigid Bodies (Cambridge University Press, Cambridge, 1959).

    Google Scholar 

  3. H. Poincaré,Les Méthodes Nouvelles de la Mécanique Celeste (Dover, 1957).

  4. V. I. Arnold,Mathematical Methods of Classical Mechanics (Springer, New York, 1978); A. J. Lichtenberg and M. A. Lieberman,Regular and Stochastic Motion (Springer, Berlin, 1983); J. Guckenheimer and P. Holmes,Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer, New York, 1983); S. N. Rasband,Chaotic Dynamics of Nonlinear Systems (Wiley, New York, 1990).

    Google Scholar 

  5. V. I. Arnold,Sov. Math. Dokl. 5:581 (1964); B. V. Chirikov,Phys. Rep. 52:265 (1979); J. Tennyson,Physica 5D:123 (1982); P. J. Holmes and J.E. Marsden,J. Math. Phys. 23:669 (1983); K. Kaneko and R. J. Bagley,Phys. Lett. 110A:435 (1985); B. P. Wood, A. J. Lichtenberg, and M. A. Lieberman,Phys. Rev. 42A:5885 (1990).

    Google Scholar 

  6. C. C. Martens, M. J. Davis, and G. S. Ezra,Chem. Phys. Lett. 142:519 (1987).

    Google Scholar 

  7. C. Cohen-Tannoudji, B. Diu, and F. Laloe,Quantum Mechanics (Wiley, New York, 1977).

    Google Scholar 

  8. C. C. Martens,J. Chem. Phys. 90:7064 (1989).

    Google Scholar 

  9. C. C. Martens,J. Chem. Phys. 94:3594 (1991).

    Google Scholar 

  10. C. C. Martens,J. Chem. Phys. 96:1870 (1992).

    Google Scholar 

  11. E. J. Heller,Phys. Rev. Lett. 53:1515 (1984); B. Eckhardt, G. Hose, and E. Pollak,Phys. Rev. A 39:3776 (1989).

    Google Scholar 

  12. R. M. Stratt, N. C. Handy, and W. H. Miller,J. Chem. Phys. 71:3311 (1979); N. De Leon, M.J. Davis, and E.J. Heller,J. Chem. Phys.,80:794 (1984).

    Google Scholar 

  13. E. P. Wigner,Phys. Rev. 40:749 (1932).

    Google Scholar 

  14. K. Husimi,Proc. Phys. Math. Soc. Japan 22:264 (1940).

    Google Scholar 

  15. J. R. Klauder and B. Skagerstam, eds.,Coherent States (World Scientific, Singapore, 1985); W.-M. Zhang, D. H. Feng, and R. Gilmore,Rev. Mod. Phys. 62:8676 (1990).

    Google Scholar 

  16. J. S. Hutchinson and R. E. Wyatt,Chem. Phys. Lett. 72:378 (1980).

    Google Scholar 

  17. Y. Weissmann and J. Jortner,Chem. Phys. Lett. 78:224 (1981); Y. Weissman and J. Jortner,Phys. Lett. 83A:55 (1981); Y. Weissman and J. Jortner,J. Chem. Phys. 77:1486 (1982).

    Google Scholar 

  18. S.-J. Chang and K.-J. Shi,Phys. Rev. Lett. 55:269 (1985); S.-J. Chang and K.-J. Shi,Phys. Rev. A 34:7 (1986); G. Radons and R. E. Prange,Phys. Rev. Lett. 61:1691 (1988).

    Google Scholar 

  19. S. K. Gray,J. Chem. Phys. 87:2051 (1987).

    Google Scholar 

  20. W. A. Lin and L. E. Ballentine,Phys. Lett. 65:2927 (1990).

    Google Scholar 

  21. R. M. Benito, F. Borondo, J.-H. Kim, B. G. Sumpter, and G. S. Ezra,Chem. Phys. Lett. 161:60 (1989).

    Google Scholar 

  22. M. J. Stevens and B. Sundaram,Phys. Rev. A 39:2862 (1989).

    Google Scholar 

  23. R. T. Skodje, H. W. Rohrs, and J. Van Buskirk,Phys. Rev. A 40:2894 (1989).

    Google Scholar 

  24. R. L. Waterland, J.-M. Yuan, C. C. Martens, and W. P. Reinhardt,Phys. Rev. Lett. 61:2733 (1988).

    Google Scholar 

  25. M. Feingold, R. G. Littlejohn, S. B. Solina, J. S. Pehling, and O. Piro,Phys. Lett. A 146:199 (1990).

    Google Scholar 

  26. M. J. Davis, C. C. Martens, R. G. Littlejohn, and J. S. Pehling, inAdvances in Molecular Vibrations and Collision Dynamics, Vol. 1B, J. M. Bowman, ed. (JAI Press, Greenwich, Connecticut, 1991).

    Google Scholar 

  27. R. V. Jensen, S. M. Susskind, and M. M. Sanders,Phys. Rep. 201:1 (1991), and references therein.

    Google Scholar 

  28. M. E. Kellman and E. D. Lynch,J. Chem. Phys. 85:7216 (1986); L. Xiao and M. E. Kellman,J. Chem. Phys. 90:6086 (1989); M. E. Kellman and L. Xiao,J. Chem. Phys. 93:5821; J. M. Standard and M. E. Kellman,J. Chem. Phys. 94:4714 (1991).

    Google Scholar 

  29. M. J. Davis,J. Phys. Chem. 92:3124 (1988).

    Google Scholar 

  30. J. Kurchan, P. Leboeuf, and M. Saraceno,Phys. Rev. A 40:6800 (1989).

    Google Scholar 

  31. B. G. Wybourne,Classical Groups for Physicists (Wiley, New York, 1974).

    Google Scholar 

  32. H. Goldstein,Classical Mechanics (Addison-Wesley, Reading, Massachusetts, 1980).

    Google Scholar 

  33. D. Papousek and M. R. Aliev,Molecular Vibrational-Rotational Spectra (Elsevier/North-Holland, New York, 1982).

    Google Scholar 

  34. J. Schwinger, inQuantum Theory of Angular Momentum, L. C. Biedenharn and H. van Dam, eds. (Academic, New York, 1965); H. V. McIntosh,Am. J. Phys. 27:620 (1959); J. M. Jaunch and E. L. Hill,Phys. Rev. 57:641 (1940); V. A. Dulock and H. V. McIntosh,Am. J. Phys. 33:109 (1965); P. Stehle and M. Y. Han,Phys. Rev. 159:1076 (1967); H. V. McIntosh, inGroup Theory and Its Applications II, E. M. Loebl, ed. (Academic Press, New York, 1971).

    Google Scholar 

  35. R. S. MacKay and J. D. Meiss, eds.Hamiltonian Dynamical Systems (Adam Hilger, Bristol, England, 1987).

    Google Scholar 

  36. M. C. Gutzwiller,Chaos in Classical and Quantum Mechanics (Springer, New York, 1991), and references therein.

    Google Scholar 

  37. Z. Li and C. C. Martens, in preparation.

  38. D. Logan and P. G. Wolynes,J. Chem. Phys. 93:4994 (1990).

    Google Scholar 

  39. B. L. van der Waerden, ed.,Sources of Quantum Mechanics (Dover, New York, 1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martens, C.C. Quantum qualitative dynamics. J Stat Phys 68, 207–237 (1992). https://doi.org/10.1007/BF01048843

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01048843

Key words

Navigation