Skip to main content

Dynamics and Statistics in the Operator Algebra of Quantum Mechanics

  • Conference paper
  • First Online:
Reality and Measurement in Algebraic Quantum Theory (NWW 2015)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 261))

  • 628 Accesses

Abstract

Physics explains the laws of motion that govern the time evolution of observable properties and the dynamical response of systems to various interactions. However, quantum theory separates the observable part of physics from the unobservable time evolution by introducing mathematical objects that are only loosely connected to the actual physics by statistical concepts and cannot be explained by any conventional sets of events. Here, I examine the relation between statistics and dynamics in quantum theory and point out that the Hilbert space formalism can be understood as a theory of ergodic randomization, where the deterministic laws of motion define probabilities according to a randomization of the dynamics that occurs in the processes of state preparation and measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. Aharonov and L. Vaidman, J. Phys. A: Math. Gen. 24, 2315 (1991).

    Article  Google Scholar 

  2. Y. Aharonov, D. Z. Albert, and L. Vaidman, Phys. Rev. Lett. 60 1351 (1988).

    Article  Google Scholar 

  3. Y. Aharonov, S. Popescu, D. Rohrlich, and P. Skrzypczyk, New J. Phys. 15, 113015 (2013).

    Article  Google Scholar 

  4. S.-Y. Baek, F. Kaneda, M. Ozawa, and K. Edamatsu, Sci. Rep. 3, 2221 (2013).

    Article  Google Scholar 

  5. C. Bamber and J. S. Lundeen, Phys. Rev. Lett. 112, 070405 (2014)

    Article  Google Scholar 

  6. J. S. Bell, Physics 1, 195 (1964).

    Article  Google Scholar 

  7. P. Busch, P. Lahti, and R. F. Werner, Phys. Rev. Lett. 111, 160405 (2013).

    Article  Google Scholar 

  8. P. Busch, P. Lahti, and R. F. Werner, Rev. Mod. Phys. 86, 1261 (2014).

    Article  Google Scholar 

  9. T. Denkmayr, H. Geppert, S. Sponar, H. Lemmel, A. Matzkin, J. Tollaksen, and Y. Hasegawa, Nat. Commun. 5, 4492 (2014).

    Article  Google Scholar 

  10. P. A. M. Dirac, Rev. Mod. Phys.17 195 (1945).

    Article  Google Scholar 

  11. J. Dressel and F. Nori, Phys. Rev. A 89, 022106 (2014).

    Article  Google Scholar 

  12. J. Erhart, S. Sponar, G. Sulyok, G. Badurek, M. Ozawa, and Y. Hasegawa, Nat. Phys. 8, 185 (2012).

    Article  Google Scholar 

  13. M. E. Goggin, M. P. Almeida, M. Barbieri, B. P. Lanyon, J. L. O’Brien, A. G. White, and G.J. Pryde, Proc. Natl. Acad. Sci. U. S. A. 108 1256 (2011).

    Article  Google Scholar 

  14. M. J. W. Hall, Phys. Rev. A 69, 052113 (2004).

    Article  MathSciNet  Google Scholar 

  15. L. Hardy, Phys. Rev. Lett. 68, 2981 (1992).

    Article  MathSciNet  Google Scholar 

  16. W. Heisenberg, Quantentheorie und Philosophie (Reclam, Stuttgart, 1979)

    Google Scholar 

  17. M. Hiroishi and H.F. Hofmann, J. Phys. A: Math. Theor. 46, 245302 (2013).

    Article  Google Scholar 

  18. H. F. Hofmann, New J. Phys. 13, 103009 (2011).

    Article  Google Scholar 

  19. H. F. Hofmann, Phys. Rev. Lett. 109, 020408 (2012).

    Article  Google Scholar 

  20. H. F. Hofmann, New J. Phys. 14, 043031 (2012).

    Article  Google Scholar 

  21. H. F. Hofmann, Phys. Rev. A 89, 042115 (2014).

    Article  Google Scholar 

  22. H. F. Hofmann, New J. Phys. 16, 063056 (2014).

    Article  Google Scholar 

  23. H. F. Hofmann, Quantum Stud. : Math. Found. 1, 39 (2014).

    Article  Google Scholar 

  24. H. F. Hofmann, Phys. Rev. A 91, 062123 (2015).

    Article  Google Scholar 

  25. H. F. Hofmann, Eur. Phys. J. D 70, 118 (2016).

    Article  Google Scholar 

  26. M. Iinuma, Y. Suzuki, T. Nii, R. Kinoshita, and H. F. Hofmann, Phys. Rev. A 93, 032104 (2016).

    Article  MathSciNet  Google Scholar 

  27. A. N. Jordan, A. N. Korotkov, and M. Büttiker, Phys. Rev. Lett. 97, 026805 (2006).

    Article  Google Scholar 

  28. S. Kino, T. Nii, and H. F. Hofmann, Phys. Rev. A 92, 042113 (2015).

    Article  Google Scholar 

  29. J. G. Kirkwood, Phys. Rev.44, 31 (1933).

    Article  Google Scholar 

  30. S. Kochen and E.P. Specker E P, J. Math. Mech. 17, 59 (1967).

    Google Scholar 

  31. A. J. Leggett and A. Garg, Phys. Rev. Lett. 54, 857 (1985).

    Article  MathSciNet  Google Scholar 

  32. J. S. Lundeen and C. Bamber, Phys. Rev. Lett. 108, 070402 (2012).

    Article  Google Scholar 

  33. J. S. Lundeen and A. M. Steinberg, Phys. Rev. Lett. 102, 020404 (2009).

    Article  Google Scholar 

  34. J. S. Lundeen, B. Sutherland, A. Patel, C. Stewart, and C. Bamber, Nature474, 188 (2011).

    Article  Google Scholar 

  35. N. H. McCoy, Proc. Natl. Acad. Sci. U. S. A.18, 674 (1932).

    Article  Google Scholar 

  36. T. Nii, M. Iinuma, and H. F. Hofmann, Quantum Stud.: Math. Found. 5, 229 (2018)

    Google Scholar 

  37. M. Ozawa, Phys. Rev. A 67, 042105 (2003).

    Article  Google Scholar 

  38. K. J. Resch, J. S. Lundeen, and A. M. Steinberg, Phys. Lett. A 324, 125 (2004).

    Article  Google Scholar 

  39. M. Ringbauer, D. N. Biggerstaff, M. A. Broome, A. Fedrizzi, C. Branciard, and A. G. White, Phys. Rev. Lett. 112, 020401 (2014).

    Article  Google Scholar 

  40. L. A. Rozema, A. Darabi, D. H. Mahler, A. Hayat, Y. Soudagar, and A. M. Steinberg, Phys. Rev. Lett. 109, 100404 (2012).

    Article  Google Scholar 

  41. J. Z. Salvail, M. Agnew, A. S. Johnson, E. Bolduc, J. Leach, and R. W. Boyd, Nature Photon 7, 316 (2013).

    Article  Google Scholar 

  42. Y. Suzuki, M. Iinuma, and H. F. Hofmann, New J. Phys. 14, 103022 (2012).

    Article  Google Scholar 

  43. J. Tollaksen, J. Phys. A: Math. Gen. 40, 9033 (2007).

    Article  MathSciNet  Google Scholar 

  44. G. Vallone and D. Dequal, Phys. Rev. Lett. 116, 040502 (2016).

    Article  Google Scholar 

  45. Y. Watanabe, T. Sagawa, and M. Ueda, Phys. Rev. A 84, 042121 (2011).

    Article  Google Scholar 

  46. M. M. Weston, M. J. W. Hall, M. S. Palsson, H. M. Wiseman, and G. J. Pryde, Phys. Rev. Lett. 110, 220402 (2013).

    Article  Google Scholar 

  47. N. S. Williams and A. N. Jordan, Phys. Rev. Lett. 100, 026804 (2008).

    Article  Google Scholar 

  48. S. Wu, Sci. Rep. 3, 1193 (2013).

    Article  Google Scholar 

  49. K. Yokota, T. Yamamoto, M. Koashi, and N. Imoto, New J. Phys. 11, 033011 (2009).

    Article  Google Scholar 

  50. P. Zou, Z. Zhang, and W. Song, Phys. Rev. A 91, 052109 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger F. Hofmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hofmann, H.F. (2018). Dynamics and Statistics in the Operator Algebra of Quantum Mechanics. In: Ozawa, M., Butterfield, J., Halvorson, H., Rédei, M., Kitajima, Y., Buscemi, F. (eds) Reality and Measurement in Algebraic Quantum Theory. NWW 2015. Springer Proceedings in Mathematics & Statistics, vol 261. Springer, Singapore. https://doi.org/10.1007/978-981-13-2487-1_8

Download citation

Publish with us

Policies and ethics