Skip to main content
Log in

Kinetics and mechanism of lead-iodide film growth on lead

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The tarnishing rate of Pb with iodine vapor in the temperature and pressure ranges of 423–523 K and 0.615–6.578 kPa, respectively, have been studied. The film-growth kinetics follow the parabolic law. The iodine-vapor-pressure dependence of the isothermal parabolic rate constant has been observed to be kP∝p 1/2 I2 which is explained on the basis of the migration of electron holes across the film as the rate-limiting step. The activation energy value for iodination of Pb under normal conditions in an iodine pressure of 0.615 kPa is estimated to be 64 kJ·mol−1. In contrast, the rate of iodide-film growth has been found to increase considerably under a short-circuit mode of experiments. Such observations have been explained with the help of ion migration as the rate-limiting step for the film-growth process. The iodine-pressure dependence of the rate constant under short-circuit conditions is found to be kP∝p 1/3 I2 associated with an activation energy of 51 kJ·mol−1. Results of the present study have been explained assuming Schottky-Wagner-type point defects in the lead-iodide film, where an equivalent number of vacancies in the cationic and anionic sublattices are present, and taking into account Wagner's electrochemical potential gradient as the main driving force for the film-growth process. The kinetics results have been substantiated through characterization of iodide films by SEM, EDS, EPMA, and XRD analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Wagner,Z. Phys. Chem. 21B, 25 (1933);32B, 447 (1936).

    Google Scholar 

  2. N. Cabrera and N. F. Mott,Rept. Progr. Phys. 12, 163 (1949).

    Google Scholar 

  3. P. Kofstad,High Temperature Oxidation of Metals (Wiley, New York, 1966), p. 135;High Temperature Corrosion (Elsevier Applied Science, London and New York, 1988), p. 64.

    Google Scholar 

  4. J. Schoonman, A. Wolfert, and D. F. Untereker,Solid State Ionics,11, 187 (1983).

    Google Scholar 

  5. A. M. Salau,Solar Energy Mater. 2, 327 (1980).

    Google Scholar 

  6. D. Z. Edwards, J. Z. Gier, Z. E. Nelson, and R. D. Roddick,J. Solar Energy 6, 1 (1962).

    Google Scholar 

  7. C. Manfredotti, R. Murr, A. Quirini and L. Vasanelli,IEEE Trans. Nucl. Sci. 24, 126 (1977).

    Google Scholar 

  8. J. C. Lund, K. S. Shah, M. R. Squillante, and F. Sinclair,IEEE Trans. Nucl. Sci. 35, 89 (1988).

    Google Scholar 

  9. J. Eckstein, B. Erler, and K. W. Benz,Mater. Res. Bull. 27, 537 (1937).

    Google Scholar 

  10. R. I. Dawood and A. J. Forty,Phil. Mag. 8, 1003 (1963).

    Google Scholar 

  11. A. E. Dugan and H. K. Henisch,J. Phys. Chem. Solids 28, 1885 (1967).

    Google Scholar 

  12. S. Baidyaroy, W. R. Bottoms, and P. Mark,J. Phys. Chem. Solids 33, 357 (1972).

    Google Scholar 

  13. J. Schoonman,Solid State Commun. 13, 673 (1973).

    Google Scholar 

  14. A. P. Lingras and G. Simkovich,J. Phys. Chem. Solids 39, 1225 (1978).

    Google Scholar 

  15. J. F. Verway,J. Phys. Chem. Solids 31, 163 (1970).

    Google Scholar 

  16. J. Malinowsky,Photo. Sci. Eng. 15, 175 (1971).

    Google Scholar 

  17. T. K. Choudhuri and H. N. Acharya,Mater. Res. Bull. 17, 279 (1982).

    Google Scholar 

  18. J. M. L. Kerbusch,J. Solid State Chem. 9, 197 (1974).

    Google Scholar 

  19. H. K. Henisch and C. Srinivasagopalan,Solid State Commun. 4, 415 (1966).

    Google Scholar 

  20. N. L. Dmitruk, V. M. Shari, M. T. Kostyshin, and E. V. Mikhailovskaya,Sov. Phys. Semicond. 14, 350 (1980).

    Google Scholar 

  21. W. Seith,Z. Phys. 57, 869 (1929).

    Google Scholar 

  22. W. Jost,Diffusion in Solids, Liquids and Gases (Academic Press, New York, 1952), p. 185.

    Google Scholar 

  23. N. F. Mott and R. W. Gurney,Electronic Processes in Ionic Crystals (Dover, New York, 1948), p. 53.

    Google Scholar 

  24. J. H. Eriksen and K. Hauffe,5th Scand. Corrosion Congr., Copenhagen, 1968, p. 38-I.

  25. R. N. Patnaik, S. K. Bose, and S. C. Sircar,Br. Corros. J. 12, 57 (1977).

    Google Scholar 

  26. S. K. Bose and S. C. Sircar,Trans. Indian Inst. Met. 33, 37, 45 (1980).

    Google Scholar 

  27. D. M. Smyth and M. Cutler,J. Electrochem. Soc. 106, 107 (1959).

    Google Scholar 

  28. M. Shiojiri, Y. Hasegawa, and K. Konishi,J. App. Phys. 44, 2996 (1973).

    Google Scholar 

  29. B. Ilschner,J. Chem. Phys. 28, 1109 (1958).

    Google Scholar 

  30. D. O. Raleigh,J. Phys. Chem. Solids 26, 329 (1965).

    Google Scholar 

  31. O. Kubaschewski and C. B. Alcock,Metallurgical Thermochemistry (Pergamon Press, Oxford, 1989), p. 364.

    Google Scholar 

  32. K. Hauffe,Oxidation of Metals (Plenum Press, New York, 1965), p. 157.

    Google Scholar 

  33. A. T. Fromhold,J. Phys. Chem. Solids 33, 95 (1972).

    Google Scholar 

  34. A. T. Fromhold,Theory of Metal Oxidation—Fundamentals (North-Holland, Amsterdam, 1976), Vol. 1, p. 204.

    Google Scholar 

  35. C. Ilschner-Gensch and C. Wagner,J. Electrochem. Soc. 105, 198 (1958).

    Google Scholar 

  36. R. I. Dawood and A. J. Forty,Phil. Mag. 7, 1633 (1962).

    Google Scholar 

  37. C. Tubandt, H. Reinhold, and G. Liebold,Z. Anorg. Chem. 197, 225 (1931).

    Google Scholar 

  38. G. von Hevesy and W. Seith,Z. Phys. 56, 790 (1929).

    Google Scholar 

  39. F. A. Kröger,The Chemistry of Imperfect Crystals (North-Holland, Amsterdam, 1974), Vol. 3, p. 93.

    Google Scholar 

  40. P. Kofstad,High Temperature Corrosion (Elsevier Applied Science, London and New York, 1988), p. 199.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuiry, S.C., Roy, S.K. & Bose, S.K. Kinetics and mechanism of lead-iodide film growth on lead. Oxid Met 46, 399–422 (1996). https://doi.org/10.1007/BF01048638

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01048638

Key Words

Navigation