Skip to main content
Log in

Optomotor reaction and fixation of walking colorado beetles (Coleoptera: Chrysomelidae): Course control aspects

  • Published:
Journal of Insect Behavior Aims and scope Submit manuscript

Abstract

The paths of Colorado beetles (Leptinotarsa decemlineata Say)in a featureless environment are circular. This behavior is explained by an internal asymmetry. To stabilize the path, the fixation reaction or the optomotor response must work against this asymmetry. The turning behavior was examined in stationary patterns of vertical stripes different at spatial wavelengths (λ). The internal asymmetry was tested in a horizontally striped pattern. A stable fixation reaction was found only for Λ ≥ 120 °. The results suggest that larger intrinsic turning tendencies shifts the stable point of the fixation reaction. The same vertically striped patterns were rotated to examine the following reaction of the beetle. It is concluded that the fixation component of the response of these insects, in particular, does not differ in the two situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Batschelet, E. (1981).Circular Statistics in Biology, Academic Press, New York.

    Google Scholar 

  • Böhm, H. (1987).Die Anemotaxis beim Totengräber Necrophorus humatorF. (Silphidae, Coleoptera), Thesis, Köln.

  • Buddenbrock, W., and Moller-Racke, I. (1954). Untersuchungen über die Optomotorik und die retinalen Bildverschiebungen bei den KornkäfernCalandra aryzae undC. granaria.Zool. Jahrbuch Abteilung allgemeine Zool. Physiol. 65: 219–236.

    Google Scholar 

  • Bülthoff, H., and Wehrhahn, C. (1984). Computation of motion and position in the visual system of the fly (Musca). Experiments with uniform stimulation. In Varjd, D., and Schnitzler, H. U. (eds.),Localization and Orientation in Biology and Engineering, Springer, Berlin, pp. 149–152.

    Google Scholar 

  • Collett, T. S. (1980). Angular tracking and the optomotor response. An analysis of visual reflex interaction in a hoverfly.J. Comp. Physiol. 140: 145–158.

    Google Scholar 

  • Geiger, G., and Nässel, D. R. (1982). Visual processing of moving single objects and wide-field patterns in flies: behavioural analysis after laser-surgical removal of interneurones.Biol. Cybern. 44: 141–149.

    Google Scholar 

  • Götz, G. (1975). The optomotor equilibrium of theDrosophila navigation system.J. Comp. Physiol. 99: 187–210.

    Google Scholar 

  • Heisenberg, M., and Wolf, R. (1984).Vision in Drosophila, Springer, Berlin, Heidelberg, New York.

    Google Scholar 

  • Kramer, E. (1975). Orientation of the male silkmoth to the sex attractant bombykol. In Denton, D. A., and Coghlan, J. P. (eds.),Olfaction and Taste, Academic Press, New York, pp. 329–335.

    Google Scholar 

  • Lönnendonker, U. (1984).Der Beitrag von Fixation und Optomotorik an der Orientierung laufender Kartoffelkäfer—Statische und dynamische Aspekte beider Systeme, Thesis, Köln.

  • Lönnendonker, U., and Scharstein, H. (1991). Fixation and optomotor response of walking Colorado beetles: Interaction with spontaneous turning tendencies.Physiol. Entomol. 16: 65–76.

    Google Scholar 

  • Meyer, H. W. (1978). Phototaxis in the walking male and female fly (Calliphora erythrocephala Meig.). II Water balance and phototactic response.Biol. Cybern. 31: 7–13.

    Google Scholar 

  • Osorio, D., Srinivasan, M. V., and Pinter, R. B. (1990). What causes edge fixation in walking flies?J. Exp. Biol. 149: 281–292.

    Google Scholar 

  • Pick, B. (1976). Visual pattern discrimination as an element of the fly's orientation behavior.Biol. Cybern. 23: 171–180.

    Google Scholar 

  • Preiss, R., and Kramer, E. (1984). The interaction of edge fixation and negative phototaxis in the orientation of walking gypsy moths,Lymantria dispar.J. Comp. Physiol. A 154: 493–498.

    Google Scholar 

  • Radl, E. (1906). Einige Bemerkungen über den Phototropismus der Tiere.Biol. Centralblatt 26: 677–690.

    Google Scholar 

  • Reichardt, W. (1969). Movement perception in insects. In Reichardt, W. (ed.),Proceedings of the International School of Physics “Enrico Fermi”, Processing of Optical Data by Organisms and by Machines, pp. 465–493.

  • Reichardt, W., and Poggio, T. (1976). Visual control of orientation behavior in the fly. I. A quantitative analysis.Q. Rev. Biophys. 9: 311–375.

    Google Scholar 

  • Sachs, L. (1978).Angewandte Statistik, Springer, Berlin, Heidelberg, New York.

    Google Scholar 

  • Schmitz, B., Scharstein, H., and Wendler, G. (1982). Phonotaxis inGryllus campestris L (Orthoptera, Gryllidae) I. Mechanism of acoustic orientation in intact female crickets.J. Comp. Physiol. 148: 431–444.

    Google Scholar 

  • Schöne, H. (1980).Orientierung im Raum, Wissenschaftliche Verlagsgesellschaft, Stuttgart.

    Google Scholar 

  • Varjú, D. (1973). Übertragungseigenschaften im Auswertesystem für das Bewegungssehen. In Lueken, B., and Scharf, J. H. (eds.),Nova Acta Leopoldina. 208: 173–193.

  • Varjú, D. (1975). Stationary and dynamic responses during visual edge fixation and negative phototaxis in the mealworm beetleTenebrio molitor.Nature 255: 330–332.

    Google Scholar 

  • Varjú, D. (1976). Visual edge fixation and negative phototaxis in the mealworm beetleTenebrio molitor.Biol. Cybern. 25: 17–26.

    Google Scholar 

  • Varjú, D. (1987). The interaction between visual edge fixation and skototaxis in the mealworm beetleTenebrio molitor.J. Comp. Physiol. A 160: 543–552.

    Google Scholar 

  • Virsik, R. P., and Reichardt, W. (1976). Detection and tracking of moving objects by the flyMusca domestica.Biol. Cybern. 23: 83–98.

    Google Scholar 

  • Voss, C. (1967). Über das Formensehen der roten Waldameise (Formica rufa Gruppe).Z. Vergl. Physiol. 55: 225–254.

    Google Scholar 

  • Weber, T., Thorson, J., and Huber, F. (1981). Auditory behaviour of the cricket. I. Dynamics of compensated walking and discrimination paradigms on the Kramer treadmill.J. Comp. Physiol. 141:215–232.

    Google Scholar 

  • Wehner, R. (1981). Spatial vision in arthropods. In Autrum, H. (ed.),Handbook of Sensory Physiology, Vol. VII/6C, Springer, Heidelberg, pp. 287–616.

    Google Scholar 

  • Wehrhahn, C., Hausen, K., and Zanker, J. (1981). Is the landing response of the housefly (Musca) driven by motion of a flow field?Biol. Cybern. 41: 91–99.

    Google Scholar 

  • Wendler, G., and Scharstein, H. (1986). The orientation of grain weevils (Sitophilus granarius): Influence of spontaneous turning tendencies and of gravitational stimuli.J. Comp. Physiol. A. 159: 377–389.

    Google Scholar 

  • Wilson, D. M., and Hoy, R. R. (1968). Optomotor reaction, locomotory bias and reaction inhibition in the milkweed bugOncopeltus and the beetleZophobas.Z. Vergl. Physiol. 58: 136–152.

    Google Scholar 

  • Zanker, J. M., and Collett, T. S. (1985). The optomotor system on the ground: On the absence of visual control of speed in walking ladybirds.J. Comp. Physiol. A 156: 395–402.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lönnendonker, U. Optomotor reaction and fixation of walking colorado beetles (Coleoptera: Chrysomelidae): Course control aspects. J Insect Behav 4, 347–365 (1991). https://doi.org/10.1007/BF01048283

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01048283

Key words

Navigation