Skip to main content
Log in

Cascades of homoclinic orbits to, and chaos near, a Hamiltonian saddle-center

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

We consider a class of reversible, two-degree of freedom Hamiltonian systems possessing homoclinic orbits to a saddle-center: an equilibrium having two non-zero real and two nonzero imaginary eigenvalues. Under mild nondegeneracy conditions, we construct a two-parameter unfolding and show that there is a countable infinity of “secondary” homoclinic bifurcations in any neighborhood of the original system. We also demonstrate the existence of families of periodic orbits and of shifts on two symbols (horseshoes). The lack of hyperbolicity and the presence of conserved quantities make the analysis somewhat delicate. We discuss specific examples for which the nondegeneracy conditions can be explicitly checked but indicate that this is not always possible. We illustrate our results with numerical work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amick, C. J., and Kirchgässner, K. (1989). A theory of solitary water-waves in the presence of surface tension.Arch. Ration. Mech. Anal. 105, 1–49.

    Google Scholar 

  • Chow, S.-N., Deng, B., and Fiedler, B. (1990). Homoclinic bifurcation at resonant eigenvalues.J. Dynam. Diff. Eq. 2, 177–244.

    Google Scholar 

  • Conley, C. C. (1968). Twist mappings, linking, analyticity, and periodic solutions which pass close to an unstable periodic solution. In Auslander, J., and Gottschalk, W. H. (eds.),Topological Dynamics, Benjamin, New York, pp. 129–153.

    Google Scholar 

  • Conley, C. C. (1969). On the ultimate behavior of orbits with respect to an unstable critical point. I. Oscillating, asymptotic, and capture orbits.J. Diff. Eq. 5, 136–158.

    Google Scholar 

  • Churchill, R. C., and Rod, D. L. (1980). Pathology in dynamical systems. III. Analytic Hamiltonians.J. Diff. Eq. 37, 23–38.

    Google Scholar 

  • Churchill, R. C., Pecelli, G., Sacolick, S., and Rod, D. L. (1977). Coexistence of stable and random motion.Rocky Mt. J. Math. 7, 445–456.

    Google Scholar 

  • Devaney, R. L. (1979). Homoclinic orbits to hyperbolic equilibria. In Gurel, O., and Rössler, O. (eds.),Bifurcation Theory and Applications in Scientific Disciplines, Annals of the New York Academy of Sciences, New York, p. 316.

  • Devaney, R. L. (1976). Homoclinic orbits in Hamiltonian systems.J. Diff. Eq. 21, 431–438.

    Google Scholar 

  • Gaspard, P. (1984). Generation of a countable set of homoclinic flows through bifurcation in multidimensional systems.Bull. Class. Sci. Acad. Roy. Belg. Ser. 5 LXX, 61–83.

    Google Scholar 

  • Glendinning, P. (1989). Subsidiary bifurcations near bifocal homoclinic orbits.Math. Proc. Cambridge Phil. Soc. 105, 597–605.

    Google Scholar 

  • Guckenheimer, J., and Holmes, P. (1983).Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Appl. Math. Sciences Vol. 42, Springer-Verlag, New York.

    Google Scholar 

  • Holmes, P, J., and Mielke, A. (1988). Spatially complex equilibria of buckled rods.Arch. Ration. Mech. Anal. 101, 319–348.

    Google Scholar 

  • Johnson, J. M., and Bajaj, A. K. (1989). Amplitude modulated and chaotic dynamics in resonant motion of strings.J. Sound Vibrat. 128, 87–107.

    Google Scholar 

  • Kokubu, H. (1988). Homoclinic and heteroclinic bifurcations of vector fields.Jap. J. Appl. Math. 5, 455–501.

    Google Scholar 

  • Lasagni, F. M. (1988). Canonical Runge-Kutta methods.J. Appl. Math. Phys. (ZAMP) 39, 952–953.

    Google Scholar 

  • Lerman, L. M. (1987). Hamiltonian systems with a separatrix loop of a saddle center. InMethods of the Qualitative Theory of Differential Equations (Russian), Gor'kov, Gos. Univ., Gorki, pp. 89–103 (Math. Rev. 90g: 58 035).

    Google Scholar 

  • Llibre, J., and Simó, C. (1980). On the Hénon-Heiles potential.Actas del III CEDYA, Santiago de Compostela, pp. 183–206.

  • Llibre, J., Martínez, R., and Simó, C. (1985). Transversality of the invariant manifolds associated to the Lyapunov family of periodic orbits nearL 2 in the restricted three-body problem.J. Diff. Eq. 58, 104–156.

    Google Scholar 

  • Miles, J. W. (1984). Resonant, nonplanar motion of a stretched string.J. Acoust. Soc. Am. 75, 1505–1510.

    Google Scholar 

  • Mielke, A. (1990). Topological methods for discrete dynamical systems.GAMM-Mitteilungen, Heft 2, p. 19–37.

  • Mielke, A. (1991).Hamiltonian and Lagrangian Flows on Center Manifolds with Applications to Elliptic Variational Problems, Lect. Notes Math., Vol. 1489, Springer-Verlag, New York.

    Google Scholar 

  • Moser, J. (1958). On the generalization of a theorem of A. Liapunoff.Comm. Pure Appl. Math. 11, 257–271.

    Google Scholar 

  • Moser, J. (1973).Stable and Random Motions in Dynamical Systems, Princeton University Press, Princeton, N.J.

    Google Scholar 

  • Moltena, T. C. A., and Tufillaro, N. B. (1990). Torus doubling and chaotic string vibrations: Experimental results.J. Sound Vibrat. 137, 327–330.

    Google Scholar 

  • O'Reilly, O., (1990).The Chaotic Vibration of a String, Ph.D. thesis, Cornell University, Ithacar, N.Y.

    Google Scholar 

  • O'Reilly, O., and Holmes, P. (1992). Nonlinear, nonplanar and nonperiodic vibrations of a string.J. Sound Vibrat. (in press).

  • Pérouème, M. C. (1989). Perturbations de systemes reversibles—dedoublement d'orbites homoclines. Manuscript Université de Nice, Nice, France.

  • Rüssmann, H. (1964). Über das Verhalten analytischer Hamiltonscher Differentialgleichungen in der Nähe einer Gleichgewichtslösung.Math. Ann. 154, 285–300.

    Google Scholar 

  • Shil'nikov, L. P. (1970). A contribution to the problem of the structure of an extended neighborhood of a rough equilibrium state of saddle-focus type.Math. USSR Sbornik 10, 91–102.

    Google Scholar 

  • Turaev, D. V., and Shil'nikov, L. P. (1989). On Hamiltonian systems with homoclinic saddle curves.Soviet Math. Dokl. 39, 165–168.

    Google Scholar 

  • Wiggins, S. (1988).Global Bifurcations and Chaos, Appl. Math. Sciences Vol. 73, Springer-Verlag, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mielke, A., Holmes, P. & O'Reilly, O. Cascades of homoclinic orbits to, and chaos near, a Hamiltonian saddle-center. J Dyn Diff Equat 4, 95–126 (1992). https://doi.org/10.1007/BF01048157

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01048157

Key words

AMS subject classifications

Navigation