Skip to main content
Log in

Interfacial feeding behavior and particle flow patterns ofAnopheles quadrimaculatus larvae (Diptera: Culicidae)

  • Published:
Journal of Insect Behavior Aims and scope Submit manuscript

Abstract

The interfacial feeding behavior, mouthpart movements, and particle flow patterns of Anopheles quadrimaculatuslarvae were investigated, using videotape recordings, high-speed microcinematography, SEM, and laboratory experiments. While positioned at the water surface, larvae demonstrated 12 behaviors associated with movements of the head. In one of these, a larva rotated its head 180° and directed its mouthparts against the air-water interface. The larva rapidly extended and retracted its lateral palatal brushes (LPBs) at a rate of 5 cycles/s (5 Hz), creating currents and allowing for the collection of particles. Particles moved toward the head at a velocity of 4.31 mm/s, in discrete stops and starts, as the LPBs beat. Our analyses determined that particle movement toward the mouth was governed by very low Reynolds numbers (0.002–0.009). This finding indicated that viscous forces predominated in Anophelesfeeding and no inertial movement of particles occurred. According to this model, the LPBs cannot intercept particles directly, but function as paddles for particle entrainment. We did not observe the pharynx to function in particle filtration but, rather, in food bolus formation. We propose that the maxillary pilose area and midpalatal brush function as interception structures. It appeared that the LPBs do not break the surface film to feed, but collect particles from the surface microlayers. A plume of uningested particles emerged from the sides of the cibarium and descended into the water column. The plume consisted of alternately clear and dark, lenticular laminae formed beneath the larval head during the collecting filtering feeding mode. A comparison of particle sizes from surface microlayers and gut contents of fourth instars showed that larvae ingested mainly small particles in the range of 1.5 to 4.5 pm in diameter. The potential significance of interfacial feeding by anopheline larvae in their aquatic environment is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alcaraz, M., Paffenhofer, G. A., and Strickler, J. R. (1980). Catching the algae: A first account of visual observations on filter-feeding calanoids.Am. Soc. Limnol. Oceanogr. Spec. Symp. 3: 241–248.

    Google Scholar 

  • Aly, C., and Mulla, M. S. (1986). Orientation and ingestion rates of larvalAnopheles albimanus in response to floating particles.Entomol. Exp. Appl. 42: 83–90.

    Google Scholar 

  • Bekker, E. E. (1938). On the mechanism of feeding in larvae ofAnopheles.Zool. Zh. 17: 741–762. (in Russian).

    Google Scholar 

  • Braimah, S. A. (1987). Mechanisms of filter feeding in immatureSimulium bivittatum Malloch (Diptera: Simuliidae) andIsonychia campestris McDunnough (Ephemeroptera, Oligoneuriidae)Can. J. Zool. 65: 504–513.

    Google Scholar 

  • Cheer, A. Y. L., and Koehl, M. A. R. (1987). Paddles and rakes: Fluid flow through bristled appendages of small organisms.J. Theor. Biol. 129: 17–39.

    Google Scholar 

  • Christophers, S. R., and Puri, I. M. (1929). Why doAnopheles larvae feed at the surface, and how?Trans. Far-East. Assoc. Trop. Med. 2: 736–739.

    Google Scholar 

  • Clements, A. N. (1992).The Biology of Mosquitoes, Vol. I, Chapman and Hall, London.

    Google Scholar 

  • Craig, D. A., and Chance, M. M. (1982). Filter feeding in larvae of Simuliidae (Diptera: Culicomorpha): Aspects of functional morphology and hydrodynamics.Can. J. Zool. 60: 712–724.

    Google Scholar 

  • Cummins, K. W. (1973). Trophic relations of aquatic insects.Annu. Rev. Entomol. 18: 183–206.

    Google Scholar 

  • Dadd, R. H. (1971). Effects of size and concentration of particles on rates of ingestion of latex particulates by mosquito larvae.Ann. Entomol. Soc. Am. 64: 687–692.

    Google Scholar 

  • Dahl, C., Widahl, L., and Nilsson, C. (1988). Functional analysis of the suspension feeding system in mosquitos (Culicidae: Diptera).Ann. Entomol. Soc. Am. 81: 105–127.

    Google Scholar 

  • Dahl, C., Craig, D. A., and Merritt, R. W. (1990). The sites of possible mucus-producing glands in the feeding system of mosquito larvae (Culicidae: Diptera).Ann. Entomol. Soc. Am. 83: 827–833.

    Google Scholar 

  • Fagen, R. M. (1978). Repertoire analysis. In Colgan, P. W. (ed.),Quantitative Ethology, John Wiley and Sons, New York, pp. 25–42.

    Google Scholar 

  • Harbach, R. E. (1977). Comparative and functional morphology of the mandibles of some fourth stage mosquito larvae (Diptera: Culicidae).Zoomorphologie 87: 217–236.

    Google Scholar 

  • Harbach, R. E., and Knight, K. L. (1980).Taxonomists' Glossary of Mosquito Anatomy, Plexus, Medford, NJ.

    Google Scholar 

  • Hess, A. D., and Hall, T. F. (1943). The intersection line as a factor in anopheline ecology.J. Natl. Malaria Soc. 2: 93–98.

    Google Scholar 

  • Hermansson, M. (1990). The dynamics of dissolved and paniculate organic material in surface microlayers. In Wotton, R. S. (ed.),The Biology of Particles in Aquatic Systems, CRC Press, Boca Raton, FL, pp. 145–159.

    Google Scholar 

  • Hinman, E. H. (1932). The role of solutes and colloids in the nutrition of anopheline larvae. A preliminary report.Am. J. Trop. Med. 12: 263–271.

    Google Scholar 

  • Jones, J. C. (1954). Some notes on the behavior of fourth instarAnopheles quadrimaculatus Say (Diptera: Culicidae).Mosq. News 14: 186–191.

    Google Scholar 

  • Jørgensen, C. B. (1966).Biology of Suspension Feeding, Pergamon, Oxford.

    Google Scholar 

  • Jørgensen, C. B. (1983). Fluid mechanical aspects of suspension feeding.Mar. Ecol. Prog. Ser. 11: 89–103.

    Google Scholar 

  • Laind, M., Craig, Walker, Vanderploeg, and Wotton Laird, M. (1988).The Natural History of Larval Mosquito Habitats, Academic Press, London.

    Google Scholar 

  • Lechowicz, M. J. (1982). The sampling characteristics of electivity indices.Oecologia (Berl.) 52: 22–30.

    Google Scholar 

  • Lugt, H. J. (1983).Vortex Flow in Nature and Technology, John Wiley and Sons, New York.

    Google Scholar 

  • Merritt, R. W. (1987). Do different instars ofAedes triseriatus feed on particles of the same size?J. Am. Mosq. Control Assoc. 3: 94–96.

    Google Scholar 

  • Merritt, R. W., and Craig, D. A. (1987). Larval mosquito (Diptera: Culicidae) feeding mechanisms: Mucosubstance production for capture of fine particles.J. Med. Entomol. 24: 275–278.

    Google Scholar 

  • Merritt, R. W., and Cummins, K. W. (eds.) (1984).An Introduction to the Aquatic Insects of North America, Kendall/Hunt, Dubuque, IA.

    Google Scholar 

  • Merritt, R. W., Mortland, M. M., Gersabeck, E. R., and Ross, D. H. (1978). X-ray diffraction analysis of particles ingested by filter-feeding animals.Entomol. Exp. Appl. 24: 27–34.

    Google Scholar 

  • Merritt, R. W., Cummins, K. W., and Burton, T. M. (1984). The role of aquatic insects in the processing and cycling of nutrients. In Resh, V. H., and Rosenberg, D. M. (eds.),The Ecology of Aquatic Insects. Praeger Scientific, New York, pp. 134–163.

    Google Scholar 

  • Merritt, R. W., Dadd, R. H., and Walker, E. D. (1992). Feeding behavior, natural food, and nutritional relationships of larval mosquitoes.Annu. Rev. Entomol. 37: 349–376.

    Google Scholar 

  • Orr, B. K., and Resh, V. H. (1989). Experimental test of the influence of aquatic macrophyte cover on the survival of anopheles larvae.J. Am. Mosq. Control Assoc. 5: 579–585.

    Google Scholar 

  • Pucat, A. M. (1965). The functional morphology of the mouthparts of some mosquito larvae.Quaest. Entomol. 1: 41–86.

    Google Scholar 

  • Rashed, S. S., and Mulla, M. S. (1990). Comparative functional morphology of the mouth brushes of mosquito larvae (Diptera: Culicidae).J. Med. Entomol. 27: 429–439.

    Google Scholar 

  • Renn, C. E. (1941). The food economy ofAnopheles quadrimaculatus andA. crucians larvae. Relationships of the air-water interface and the surface-feeding mechanisms. InA Symposium on Hydrobiology, University of Wisconsin, Madison, pp. 329–341.

    Google Scholar 

  • Ross, D. H., and Craig, D. A. (1980). Mechanisms for fine particle capture by larval blackflies (Diptera: Simuliidae).Can. J. Zool. 58: 1186–1192.

    Google Scholar 

  • Rubenstein, D. I., and Koehl, M. A. R. (1977). The mechanisms of filter feeding. Some theoretical considerations.Am. Nat. 111: 981–994.

    Google Scholar 

  • Schremmer, F. (1949). Morphologische und funktipnelle analyse der mundteile und des pharynx der larvae vonAnopheles maculipennis Meig. Österr. Zool. Z.3: 173–221.

    Google Scholar 

  • Smith, K. L., Jr., Williams, P. M., and Druffel, E. R. M. (1989). Upward fluxes of particulate organic matter in the deep North Pacific.Nature (London) 337: 724–726.

    Google Scholar 

  • Strickler, J. R. (1984). Sticky water: A selective force in copepod evolution. In Meyers, D. G., and Strickler, J. R. (eds.),Trophic Interactions in Aquatic Ecosystems, Westview Press, Boulder, CO, pp. 187–239.

    Google Scholar 

  • Surtees, G. (1959). Functional and morphological adaptations of the larval mouthparts in the subfamily Culicidae with a review of some related studies by Montschadsky.Proc. R. Entomol. Soc. Lond. 34: 7–16.

    Google Scholar 

  • Tritton, D. J. (1988).Physical Fluid Dynamics; Clarendon Press, Oxford.

    Google Scholar 

  • Vanderploeg, H. A., and Paffenhöfer, G.-A. (1985). Modes of algal capture by the freshwater copepodDiaptomus sicilis and their relation to food-size selection.Limnol. Oceanogr. 30: 871–885.

    Google Scholar 

  • Vanderploeg, H. A., and Scavia, D. (1979). Two electivity indices for feeding with special reference to zooplankton grazing.J. Fish. Res. Bd. Can. 36: 362–365.

    Google Scholar 

  • Vogel, S. (1981).Life in Moving Fluids Willard Grant Press, Boston, MA.

    Google Scholar 

  • Walker, E. D., and Merritt, R. W. (1991). Behavior ofAedes triseriatus (Diptera: Culicidae) larvae.J. Med. Entomol. 28: 581–589.

    Google Scholar 

  • Walker, E. D., Merritt, R. W., and Wotton, R. S. (1988a). Analysis of the distribution and abundance ofAnopheles quadrimaculatus (Diptera: Culicidae) larvae in a marsh.Environ. Entomol. 17: 992–999.

    Google Scholar 

  • Walker, E. D., Olds, E. J., and Merritt, R. W. (1988b). Gut content analysis of mosquito larvae (Diptera: culicidae) using DAPI stain and epifluorescence microscopy.J. Med. Entomol. 25: 551–554.

    Google Scholar 

  • Wallace, J. B., and Merritt, R. W. (1980). Filter-feeding ecology of aquatic insects.Annu. Rev. Entomol. 25: 103–132.

    Google Scholar 

  • Widahl, L. E. (1992). Flow patterns of suspension feeding mosquito larvae (Diptera: Culicidae).Ann. Entomol. Soc. Am. 85: 91–95.

    Google Scholar 

  • Wotton, R. S. (ed.) (1990).The Biology of Particles in Aquatic Systems, CRC Press, Boca Raton, FL.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merritt, R.W., Craig, D.A., Walker, E.D. et al. Interfacial feeding behavior and particle flow patterns ofAnopheles quadrimaculatus larvae (Diptera: Culicidae). J Insect Behav 5, 741–761 (1992). https://doi.org/10.1007/BF01047984

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01047984

Key words

Navigation