Skip to main content
Log in

Diffusion of18O in massive Cr2O3 and in Cr2O3 scales at 900°C and its relation to the oxidation kinetics of chromia forming alloys

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The lattice and grain-boundary diffusion coefficients of18O atP O 2=0.1 atm and at 900°C were determined in massive Cr2O3 and in Cr2O3 scales which were grown on a Ni−30Cr alloy. The diffusion profiles were established by SIMS and analyzed considering two domains in the case of polycrystalline Cr2O3 (massive or scales), the first one relative to apparent diffusion and the second to grain-boundary diffusion. A ridge model is proposed for Cr2O3 scales to modify thef value, fraction of sites associated with the grain boundary. With such a model,f is equal to 0.0006 and 0.0005 for the scales formed during 15 hr and 165 hr, respectively. The oxygen-lattice diffusion coefficients determined in Cr2O3 scales are in very good agreement with those in massive Cr2O3. With some assumptions, our diffusion data lead to a calculated parabolic oxidation constant equal to the experimental one. Scale growth occurs by countercurrent diffusion of oxygen and chromium, mainly by grain-boundary diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Kofstad,Non-Stoichiometry, Diffusion and Electrical Conductivity in Binary Metal Oxide (Wiley, New York, 1972).

    Google Scholar 

  2. P. Kofstad and K. P. Lillerud,J. Electrochem. Soc. 127, 2410 (1980).

    Google Scholar 

  3. K. P. Lillerud and P. Kofstad,J. Electrochem. Soc. 127, 2397 (1980).

    Google Scholar 

  4. P. Kofstad,High Temperature Corrosion (Elsevier, Barking, Essex, 1988).

    Google Scholar 

  5. A. Atkinson,Rev. Mod. Phys. 57, 437 (1985).

    Google Scholar 

  6. A. C. S. Sabioni, B. Lesage, A. M. Huntz, J. C. Pivin, and C. Monty,Phil. Mag. A 66(3), 333 (1992).

    Google Scholar 

  7. A. C. S. Sabioni, A. M. Huntz, F. Millot, and C. Monty,Phil. Mag. A 66(3), 351 (1992).

    Google Scholar 

  8. A. C. S. Sabioni, A. M. Huntz, F. Millot, and C. Monty,Phil. Mag. A 66(3), 361 (1992).

    Google Scholar 

  9. W. E. King and J. H. Park,Proc. Mater. Res. Soc. Spring Meeting (1988).

  10. M. J. Graham, J. I. Elridge, D. F. Mitchell, and R. J. Hussey,Mat. Sci. Forum 43, 207 (1989).

    Google Scholar 

  11. R. E. Lobnig, H. P. Schmidt, K. Hennesen, and H. J. Grabke,Oxid. Met. 37(1/2), 81 (1992).

    Google Scholar 

  12. A. M. Huntz and S. C. Tsai,Mater. Sci. Lett. 13, 821 (1994).

    Google Scholar 

  13. E. W. Hart,Acta Metall. 5, 597 (1957).

    Google Scholar 

  14. L. G. Harrison,Trans. Faraday Soc. 57, 74 (1961).

    Google Scholar 

  15. A. D. Le Claire,J. Appl. Phys. 14, 351 (1963).

    Google Scholar 

  16. K. Kitazawa and R. L. Coble,J. Am. Ceram. Soc. 57, 250 (1974).

    Google Scholar 

  17. W. C. Hagel,J. Am. Ceram. Soc. 48, 70 (1965).

    Google Scholar 

  18. Yu. M. Mishin and G. Borchardt,J. Phys. III France 3, 945 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsai, S.C., Huntz, A.M. & Dolin, C. Diffusion of18O in massive Cr2O3 and in Cr2O3 scales at 900°C and its relation to the oxidation kinetics of chromia forming alloys. Oxid Met 43, 581–596 (1995). https://doi.org/10.1007/BF01046900

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01046900

Key Words

Navigation