Skip to main content
Log in

Effect of short-circuiting on the oxidation kinetics of copper and its doped varieties in the temperature range of 523–1073 K

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The influence of shorting circuitry attachment between metal-oxide and oxideoxygen interfaces on the oxidation kinetics of copper, lithium-doped copper (Li: 400 ppm), and chromium-doped copper (Cr: 12 ppm) have been studied in dry air\((P_{O_2 } = 21.27kPa)\) in the temperature range of 523–1073 K. Oxide film or scale growth under short-circuiting as well as under normal oxidation conditions conforms to the parabolic rate law. The oxidation kinetics under short-circuiting resulted in decreased rates for Cu and Li-doped Cu up to a temperature of 773 K, while Cr-doped Cu exhibited an enhancement in rate compared to its normal oxidation in the same temperature range. However, above 873 K, all three systems under shorting circuitry attachment exhibited enhanced rates compared to their normal oxidation rates in conformity to the existing theoretical model. Use of additional resistances in series in the outer short-circuit Pt path have clearly established that below 773 K Mott's fieldinduced migration plays the most important role, while at elevated temperatures Wagner's electrochemical potential-gradient factor acts as the main driving force in the scale-growth process. The results have been interpreted on the basis of average defect concentration, the electrochemical potential gradient, electrical field gradient, and transport coefficient in the Cu2O layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. A. Kröger,The Chemistry of Imperfect Crystals,Vol. 3 (North-Holland, Amsterdam, 1974), p. 66.

    Google Scholar 

  2. W. H. Brattain,Rev. Modern Phys. 21, 203 (1951).

    Google Scholar 

  3. H. Dunwald, K. Hauffe, and C. Wagner,Z. Phys. Chem. 14B, 467 (1932).

    Google Scholar 

  4. H. Bloem,Philips Res. Repts. 13, 167 (1958).

    Google Scholar 

  5. S. Mrowec,Defects and Diffusion in Solids—An Introduction (Elsevier, Warszawa, 1980), p. 191.

    Google Scholar 

  6. J. Bardeen, W. H. Brattain, and W. Schokley,J. Chem. Phys. 14, 714 (1946).

    Google Scholar 

  7. P. Kofstad,Nonstoichiometry, Diffusion and Electrical Conductivity in Binary Metal Oxides (Wiley-Interscience, 1972), p. 328.

  8. S. Mrowec and A. Stoklosa,Oxid. Met. 3, 291 (1971).

    Google Scholar 

  9. S. Mrowec, A. Stoklosa, and K. Godlewski,Crystal Lattice Defects 5, 239 (1971).

    Google Scholar 

  10. R. S. Toth, R. Klikson, and D. Trivich,Phys. Rev. 122, 482 (1961).

    Google Scholar 

  11. M. O'Keefe and W. J. Moore,J. Chem. Phys. 36, 3009 (1962).

    Google Scholar 

  12. W. J. Tomlinson and J. Yates,J. Phys. Chem. Solids 38, 1205 (1977).

    Google Scholar 

  13. V. Ananth, S. C. Bose, and S. C. Sircar,Scripta Met. 14, 687 (1980).

    Google Scholar 

  14. V. Ananth, S. C. Sircar, and S. K. Bose,Proc. Int. Conf. Corros. Sci. Tech. (ICMS '85), Calcutta S. K. Bose and U. K. Chatterjee eds. (Dept. of Met. Eng., I.I.T., Kharagpur, India, 1985), p. 320.

    Google Scholar 

  15. S. K. Bose, V. Ananth, and S. C. Sircar, Proc. 10th Congr. Metallic. Corros., Madras, Vol. 4 (Oxford and IBH, New Delhi, 1987), p. 3615.

    Google Scholar 

  16. S. K. Roy, S. K. Bose, and S. C. Sircar,Oxid. Met. 35, 1 (1991).

    Google Scholar 

  17. V. Ananth,Influence of Impressed Direct Current and Short-circuiting on the Oxidation of Copper and Iron and Reduction of Wüstite at High Temperatures, Ph.D. thesis (I.I.T., Kharagpur, India, 1985).

    Google Scholar 

  18. J. Xue and R. Dieckmann,J. Phys. Chem. Solids 51, 1263 (1990).

    Google Scholar 

  19. V. Ananth, S. C. Sircar, and S. K. Bose,Trans. Jpn. Inst. Metals 26, 123 (1985).

    Google Scholar 

  20. S. K. Roy, V. Ananth, and S. K. Bose,Oxid. Met. 43, 185 (1995).

    Google Scholar 

  21. P. J. Jorgensen,Oxidation of Metals and Alloys, D. L. Douglass, ed. (ASM, Metals Park, Ohio, 1971, p. 157.

    Google Scholar 

  22. P. Kofstad,High Temperature Oxidation of Metals (Wiley, New York, 1966), p. 135.

    Google Scholar 

  23. D. O. Raleigh,J. Electrochem. Soc. 113, 782 (1966).

    Google Scholar 

  24. P. Kofstad,High Temperature Corrosion (Elsevier Applied Science, London and New York, 1988), p. 199.

    Google Scholar 

  25. R. N. Patnaik, S. K. Bose, and S. C. Sircar,Br. Corros. J. 12, 57 (1977).

    Google Scholar 

  26. A. T. Fromhold,Theory of Metal Oxidation, Vols. I, II (North-Holland, Amsterdam, 1976, 1980), p. 204.

    Google Scholar 

  27. A. T. Fromhold,J. Phys. Chem. Solids 33, 95 (1972).

    Google Scholar 

  28. H. Schmalzried,Solid State Reactions, translated by A. D. Pelton (Academic Press, New York, 1974), pp. 163, 180.

    Google Scholar 

  29. J. H. Eriksen and K. Hauffe, 5th Scand. Corros. Congr., Copenhagen, 1968, p. 38-I.

  30. C. Ilschener-Gensch and C. Wagner,J. Electrochem. Soc. 105, 198 (1958).

    Google Scholar 

  31. N. Cabrera and N. F. Mott,Rept. Progr. Phys. 12, 163 (1949).

    Google Scholar 

  32. C. Wagner,Z. Phys. Chem. B21, 25 (1933);B312, 447 (1936).

    Google Scholar 

  33. C. Wagner,Atom Movements (ASM, Cleveland, Ohio, 1951), p. 151.

    Google Scholar 

  34. A. T. Fromhold,J. Phys. Soc. Jpn. 48, 2022 (1980).

    Google Scholar 

  35. S. K. Roy,Kinetics of Oxidation of Copper and Its Alloys at Low and Intermediate Temperatures, Ph.D. thesis (I.I.T., Kharagpur, 1976).

    Google Scholar 

  36. S. K. Roy and S. C. Sircar, Proc. Second National Conf on Corrosion and Its Control, SEAST, Calcutta, India, 1979, p. 93.

  37. Ref. 24., p. 186.

    Google Scholar 

  38. Ref. 1. p.103.

    Google Scholar 

  39. J. A. Leroux and E. Raub,Z. Anorg. Allgem. Chem. 188, 205 (1930).

    Google Scholar 

  40. S. K. Mitra,Influence of Short-Circuiting and Static Charge Supply on the Oxidation Kinetics of Cu, Cu−Li and Cu−Cr Systems in the Temperature Range of 523–1173 K, Ph.D. thesis I.I.T. Kharagpur, India, 1991).

    Google Scholar 

  41. F. Gesmundo and F. Viani,J. Electrochem. Soc. 128, 460, 470 (1981);129, 622 (1982).

    Google Scholar 

  42. N. F. Mott and R. W. Gurney,Electronic Processes in Inonic Crystals (Dover, New York, 1964), p. 178.

    Google Scholar 

  43. O. Kubaschewski and C. B. Alcock,Metallurgical Thermochemistry, 5th ed. (Pergamon Press, 1989), pp. 379, 382.

  44. L. V. Azaroff and J. J. Brophy,Electronic Processes in Materials (McGraw-Hill, New York, 1963), p. 345.

    Google Scholar 

  45. K. Hauffe,Oxidation of Metals (Plenum Press, New York, 1965).

    Google Scholar 

  46. Ref. 5., p. 190.

    Google Scholar 

  47. Ref. 5., p. 189.

    Google Scholar 

  48. J. Bénard and J. Talbot,C.R. Acad. Sci. Paris 225, 411 (1948).

    Google Scholar 

  49. F. P. Fehlner and N. F. Mott,Oxidation of Metals and Alloys D. L. Douglass, ed. (ASM, Metals Park, Ohio, 1971), p. 37.

    Google Scholar 

  50. M. J. Graham, D. Caplan, and R. J. Hussey,Can. Met. Q. 18, 283 (1979).

    Google Scholar 

  51. P. K. Krishnamurthy and S. C. Sircar,Acta Met. 16, 1461 (1968).

    Google Scholar 

  52. S. K. Roy, P. K. Krishnamurthy, and S. C. Sircar,Acta Met. 18, 519 (1970).

    Google Scholar 

  53. S. C. Kuiry,Studies on Kinetics of Iodide Film Growth on Pb, Ag and Their Doped Varieties in Iodine Atmosphere, Ph.D. thesis (I.I.T. Kharagpur, India, 1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bose, S.K., Mitra, S.K. & Roy, S.K. Effect of short-circuiting on the oxidation kinetics of copper and its doped varieties in the temperature range of 523–1073 K. Oxid Met 46, 73–107 (1996). https://doi.org/10.1007/BF01046885

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01046885

Key words

Navigation