Skip to main content
Log in

The use of photolithographic marker technique for the probe of the diffusing species in high-temperature oxidation

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

A microlithographic-marker experiment was conducted instead of a conventional kinetics study using thermogravimetry, to study the oxidation of pure Ni and a Ni-1 at.% Cr alloy. A composite marker, consisting of a 10-nm-thick Mo layer under a 150-nm-thick Pt layer, was designed, and the method for photolithographic deposition of inert markers is described. The micron scale of the marker eliminates any ambiguity in marker identification, which is frequently encountered with conventional markers, whose size may exceed that of the microstructural features controlling oxidation. Transverse-sectioning techniques were employed for TEM and SEM analysis to detect the markers. The regularity of the markers provides a more reliable demarcation of original interface positions. The position of the markers suggests that small additions of Cr significantly promote inward transport of oxygen. The presence of the markers appears to affect only marginally the oxidation kinetics and local oxide morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. B. Pfeil,J. Iron Steel Inst. 119, 501 (1929).

    Google Scholar 

  2. A. Smigelskas and E. Kirkendall,Trans. AIME 171, 130 (1947).

    Google Scholar 

  3. B. L. Gleeson, D. L., Douglass, and F. Gesmundo,Oxid. Met. 31, 209 (1989).

    Google Scholar 

  4. E. M. Fryt, G. C. Wood, F. H. Stott, and D. P. Whittle,Oxid. Met. 23, 77 (1985).

    Google Scholar 

  5. H. M. Hindam and W. W. Smeltzer,Oxid. Met.,14, 337 (1980).

    Google Scholar 

  6. C. M. Cotell, K. Przybylski and G. L. Yurek, inFundamental Aspects of High Temperature Corrosion, Vol. 2, D. A. Shores and G. J. Yurek, eds. (The Electrochemical Society, Pennington, NJ, 1986), p. 103.

    Google Scholar 

  7. E. W. A. Young, H. E. Bishop, and J. H. deWit,Surf. Interface Anal. 9, 163 (1986).

    Google Scholar 

  8. T. A. Ramanarayanan, R. Ayer, R. Petkovic-Luton, and D. P. Leta,Oxid. Met. 29, 445 (1988).

    Google Scholar 

  9. L. W. Hobbs, H. T. Sawhill, and M. T. Tinker,Trans. Jpn. Inst. Metals JIMIS 3 Suppl., 115 (1983).

    Google Scholar 

  10. L. W. Hobbs, H. T. Sawhill, and M. T. Tinker,Rad. Effects 74, 229 (1983).

    Google Scholar 

  11. H. T. Sawhill, L. W. Hobbs, and M. T. Tinker,Adv. Ceram. 6, 128 (1983).

    Google Scholar 

  12. H. T. Sawhill and L. W. Hobbs, Proc. Int. Congr. on Metallic Corrosion, Toronto, Vol.1, 1984, p. 21.

    Google Scholar 

  13. C. K. Kim, S. K. Fan, and L. W. Hobbs,Microscopy of Oxidation, G. J. Lorimer, ed. (Institute of Metals, London, UK, 1991), p. 374.

    Google Scholar 

  14. S. B. Newcomb, W. M. Stobbs, and E. Metcalfe,Phil. Trans. R. Soc. London A 319, 191 (1986).

    Google Scholar 

  15. S. B. Newcomb, W. M. Stobbs, and E. Metcalfe,Phil. Trans. R. Soc. London A 319, 219 (1986).

    Google Scholar 

  16. S. B. Newcomb and W. M. Stobbs,Mater. Sci. Tech. 4, 384 (1988).

    Google Scholar 

  17. R. B. Marcus and T. T. Sheng,Transmission Electron Microscopy of Silicon VLSI Circuits and Structures (Wiley, New York, 1983).

    Google Scholar 

  18. K. Kowalska, E. Roszczynialska, and T. Werber,Oxid. Met. 15, 399 (1981).

    Google Scholar 

  19. G. Romeo, W. W. Smeltzer, and J. S. Kirkaldy,J. Electrochem. Soc., Solid State Sci. 118, 1336 (1971).

    Google Scholar 

  20. E. Bassous, H. N. Yu, and V. Maniscalco,J. Electrochem. Soc. 123, 1729 (1976).

    Google Scholar 

  21. E. W. A. Young and J. H. W. de Wit,Solid State Ionics, Vol. 16 (North-Holland, Amsterdam, 1985), p. 39.

    Google Scholar 

  22. K. P. R. Reddy, J. L. Smialek, and A. R. Cooper,Oxid. Met. 17, 429 (1982).

    Google Scholar 

  23. P. E. Doherty and R. S. Davis,J. Appl. Phys. 34, 619 (1963).

    Google Scholar 

  24. J. J. Randall and W. J. Bernard,J. Appl. Phys. 35, 1317 (1964).

    Google Scholar 

  25. H. M. Hindam and W. W. Smeltzer,Oxid. Met. 14, 337 (1980).

    Google Scholar 

  26. B. A. Pint, and L. W. Hobbs,Oxid. Met. 41, 203 (1994).

    Google Scholar 

  27. B. A. Pint, J. R. Martin, and L. W. Hobbs,Oxid. Met. 39, 167 (1993).

    Google Scholar 

  28. M. J. Graham, J. I. Eldrige, D. F. Mitchell, and R. J. Hussey,Mater. Sci. Forum 43, 207 (1989).

    Google Scholar 

  29. H. Schmalzried,Solid State Reactions, Monographs in Modern Chemistry, Vol. 12, (1980), p. 135.

    Google Scholar 

  30. H. Muller, G. Gyulai, W. K. Chu, and J. W. Mayer,J. Electrochem. Soc. 122, 1234 (1975).

    Google Scholar 

  31. F. Brown and W. D. Mackintosh,J. Electrochem. Soc. 120, 1096 (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, C.K. The use of photolithographic marker technique for the probe of the diffusing species in high-temperature oxidation. Oxid Met 45, 133–152 (1996). https://doi.org/10.1007/BF01046823

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01046823

Key Words

Navigation