Skip to main content
Log in

Glycopeptide-albumin derivative: Its preparation and histochemical ligand properties

  • Papers
  • Published:
The Histochemical Journal Aims and scope Submit manuscript

Summary

Carrier-immobilized mono-or disaccharides and other carbohydrate structures, derived by custom-made chemical synthesis, have already proven to be valuable ligands for localizing carbohydrate-binding proteins in tissue sections. Defined purified glycopeptides, as components of neoglycoproteins, offer the possibility of increasing their structural complexity and, thereby, their receptor selectivity. To test the feasibility of this approach, the glycopeptide man6-glcNAc2-asparagine derived from ovalbumin was purified after pronase digestion. It was coupled to bovine serum albumin as carrier protein with the homobifunctional linking agent bis-(sulphosuccinimidyl)suberate to yield the diglycosylated concanavalin A-reactive product. Following biotinylation, it was used to detect mannose-specific binding sites in fixed cells of seven human leukemia or lymphoma lines and in fixed, paraffin-embedded sections of human breast cancer. In comparison to chemically mannosylated bovine serum albumin with ten sites of glycosylation or to ovalbumin, this derivative produced a similar pattern of reaction with a quantitatively lower extent of staining in most cases. Remarkably, the presence of potential endogenous ligands for the detected receptor sites was ascertained using the plant lectin concanavalin A. Thus, the conjugation of a purified, deliberately selected glycopeptide to a suitable carrier produces a histochemical tool for detecting glycopeptide-specific binding sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allison, R. T. (1986) Lectins in diagnostic histopathology: a reviewMed. Lab. Sci. 43, 369–76.

    Google Scholar 

  • Bardosi, A., Dimitri, T., Behrends, T. Autschbach, D. &Gabius, H.-J. (1989) Is part of the molecular basis of the perineurial barrier function the lack of endogenous carbohydrate-binding proteins?J. Neurosci. Res. 22, 65–73.

    Google Scholar 

  • Barondes, S. H. (1981) Lectins: their multiple endogenous cellular functions.Ann. Rev. Biochem. 50, 207–31.

    Google Scholar 

  • Bhattacharyya, L. &Brewer, C. F. (1989) Interactions of concanavalin A with asparagine-linked glycopeptides.Eur. J. Biochem. 178, 721–6.

    Google Scholar 

  • Chen, V. J. &Wold, F. (1984) Neoglycoproteins: preparation of noncovalent glycoproteins through high-affinity protein-(glycosyl) ligand complexes.Biochemistry 23, 3306–11.

    Google Scholar 

  • Chen, V. J. &Wold, F. (1986) Neoglycoproteins: preparation and properties of complexes of biotinylated asparagine-oligosaccharides with avidin and streptavidin.Biochemistry 25, 939–44.

    Google Scholar 

  • Damjanov, I. (1987) Lectin cytochemistry and histochemistryLab. Invest. 57, 5–20.

    Google Scholar 

  • Furmanski, P., Kirkland, W. L., Gargala, T., Rich, M. A., andThe Breast Cancer Prognostic Study Clinical Associates (1981) Prognostic value of concanavalin A reactivity of primary human breast cancer cells.Cancer Res. 41, 4087–92.

    Google Scholar 

  • Gabius, H.-J. (1987) Endogenous lectins in tumors and the immune system.Cancer Invest. 5, 39–46.

    Google Scholar 

  • Gabius, H.-J. (1988) Tumourlectinology: at the intersection of carbohydrate chemistry, biochemistry, cell biology and oncology.Angew. Chem. Int. Ed. Engl. 27, 1267–76.

    Google Scholar 

  • Gabius, H.-J. (1991) Detection and functions of mammalian lectins—with emphasis on membrane lectinsBiochim. Biophys. Acta. 1071, 1–18.

    Google Scholar 

  • Gabius, H.-J. &Bardosi, A. (1991) Neoglycoproteins as tools in glycohistochemistry.Progr. Histochem. Cytochem. 22 (3), 1–66.

    Google Scholar 

  • Gabius, S. &Gabius, H.-J. (1990) Sugar receptors of the stromal cell layer in human long-term bone marrow cultures: their presence, modulatory responses to changes in the microenvironment and potential role in cellular adhesion.Blut 61, 232–9.

    Google Scholar 

  • Gabius, H.-J., Bodanowitz, S. &Schauer, A. (1988) Endogenous sugar-binding proteins in human breast tissue and benign and malignant breast lesions.Cancer 61, 1125–31.

    Google Scholar 

  • Gabius, H.-J., Schröter, C., Gabius, S., Brinck, U. &Tietze, L. F. (1990a) Binding of T-antigen-bearing neoglycoprotein and peanut agglutinin to cultured tumor cells and breast carcinomas.J. Histochem. Cytochem. 38, 1625–31.

    Google Scholar 

  • Gabius, S., Kayser, K., Hellmann, K. P., Ciesiolka, T., Trittin, A. &Gabius, H.-J. (1990b) Carrier-immobilized derivatized lysoganglioside GM1 is a ligand for specific binding sites in various human tumor cell types and peripheral blood lymphocytes and monocytes.Biochem. Biophys. Res. Commun. 169, 239–44.

    Google Scholar 

  • Gabius, S., Schirrmacher, V., Franz, H., Joshi, S. S., &Gabius, H.-J. (1990c) Analysis of cell surface sugar receptor expression by neoglycoenzyme binding and adhesion to plastic-immobilized neoglycoproteins for related weakly and strongly metastatic cell lines of murine tumor model systemsInt. J. Cancer 46, 500–7.

    Google Scholar 

  • Gabius, H.-J., Gabius, S., Brinck, U. &Schauer, A. (1990d) Endogenous lectins with specificity to β-galactosides and α- or β-n-acetylgalactosaminides in human breast cancer.Path. Res. Pract. 186, 597–607.

    Google Scholar 

  • Glass, II, W. F., Briggs, R. C. &Hnilica, L. S. (1981) Use of lectins for detection of electrophoretically separated glycoproteins transferred onto nitrocellulose sheets.Anal. Biochem 115, 219–24.

    Google Scholar 

  • Hoppe, C. A. &Lee, Y. C. (1983) The binding and processing of mannose-bovine serum albumin derivatives by rabbit alveolar macrophages.J. Biol. Chem. 258, 14193–9.

    Google Scholar 

  • Huang, C. C., Mayer, H. E. Jr. &Montgomery, R. (1970) Microheterogeneity and paucidispersity of glycoproteins.Carbohydr. Res. 13, 127–37.

    Google Scholar 

  • Kelly, J., Whelan, C. A., Weir, D. G. &Feighery, C. (1987) Removal of endogenous peroxidase activity from cryostat sections for immunoperoxidase visualization of monoclonal antibodies.J. Immunol. Meth. 96, 127–32.

    Google Scholar 

  • Kohnke-Godt, B. &Gabius, H.-J. (1989) Heparin-binding lectin from human placenta: purification and partial molecular characterization and its relationships to basic fibroblast growth factorBiochemistry 28, 6531–8.

    Google Scholar 

  • Lee, R. T., Myers, R. W. &Lee, Y. C. (1982) Further studies on the binding characteristics of rabbit liver galactose/N-acetyl-galactosamine-specific lectin.Biochemistry 21, 6292–8.

    Google Scholar 

  • Lee, R. T., Wong, T. C., Lee, R., Yue, L. &Lee, Y. C. (1989) Efficient coupling of glycopeptides to proteins with a heterobifunctional reagent.Biochemistry 28, 1856–61.

    Google Scholar 

  • Marschal, P., Reeber, A., Neeser, J. R., Vincendon, G. &Zanetta, J. P. (1989) Carbohydrate and glycoprotein specificity of two endogenous cerebellar lectins.Biochimie 71, 645–53.

    Google Scholar 

  • Maynard, Y. &Baenzinger, J. U. (1982) Characterization of a mannose and N-acetylglucosamine-specific lectin present in rat hepatocytes.J. Biol. Chem 257, 3788–94.

    Google Scholar 

  • McBroom, C. R., Samanen, C. H. &Goldstein, I. J. (1972) Carbohydrate antigens: coupling of carbohydrates to proteins by diazonium and phenylisothiocyanate reaction.Meth. Enzymol. 28, 212–19.

    Google Scholar 

  • Mencke, A. J. &Wold, F. (1982) Neoglycoproteins: preparation andin vivo clearance of serum albumin derivatives containing ovalbumin oligosaccharides.J. Biol. Chem. 257, 14799–805.

    Google Scholar 

  • Monsigny, M., Petit, C. &Roche, A. C. (1988) Colorimetric determination of neutral sugars by a resorcinol-sulfuric acid micro-method.Anal. Biochem. 175, 525–30.

    Google Scholar 

  • Ohsumi, Y., Chen, V. J., Yan, S. B., Wold, F. &Lee, Y. C. (1988) Interaction between new neoglycoproteins and thed-Man/L-Fuc receptor of rabbit alveolar macrophages.Glycoconjugate J. 5, 99–106.

    Google Scholar 

  • Paulson, J. C. (1989) Glycoproteins: what are the sugar chains for?Trends Biochem. Sci. 14, 272–6.

    Google Scholar 

  • Rademacher, T. W., Parekh, R. B. &Dwek, R. A. (1988) GlycobiologyAnn. Rev. Biochem. 57, 785–838.

    Google Scholar 

  • Roche, A. C., Barzilay, M., Midoux, P., Junqua, S., Sharon, N. &Monsigny, M. (1983) Sugar-specific endocytosis of glycoproteins by Lewis lung carcinoma cells.J. Cell. Biochem. 22, 131–40.

    Google Scholar 

  • Rogers, J. C. &Kornfeld, S. (1971) Hepatic uptake of proteins coupled to fetuin glycopeptide.Biochem. Biophys. Res. Commun. 45, 622–9.

    Google Scholar 

  • Schrevel, J., Gros, D. &Monsigny, M. (1981) Cytochemistry of cell glycoconjugates.Progr. Histochem. Cytochem. 14, 1–269.

    Google Scholar 

  • Sharon, N. &Lis, H. (1989) Lectins as cell recognition molecules.Science 246, 227–34.

    Google Scholar 

  • Staros, J. V. (1982) N-Hydroxysulfosuccinimide active esters: bis(N-hydroxysulfosuccinimide) esters of two dicarboxylic acids are hydrophilic, membrane impermeant protein cross-linkers.Biochemistry 21, 3950–5.

    Google Scholar 

  • Tiemeyer, M., Yasuda, Y. &Schnaar, R. L. (1989) Ganglioside-specific binding protein on rat brain membranes.J. Biol. Chem. 264, 1671–81.

    Google Scholar 

  • Walker, R. A. (1989) The use of lectins in histopathology.Path. Res. Pract. 185, 826–35.

    Google Scholar 

  • Yan, S. B. &Wold, F. (1984) Neoglycoproteins:in vitro introduction of glycosyl units at glutamines in β-casein using transglutaminase.Biochemistry 23, 3759–65.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gabius, HJ., Brinck, U., Lüsebrink, T. et al. Glycopeptide-albumin derivative: Its preparation and histochemical ligand properties. Histochem J 23, 303–311 (1991). https://doi.org/10.1007/BF01044961

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01044961

Keywords

Navigation