Skip to main content

Determination of Glycan Motifs Using Serial Lectin Affinity Chromatography

  • Protocol
  • First Online:
Lectins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1200))

Abstract

Serial lectin affinity chromatography is a convenient technique for characterizing glycan motifs (terminal glycan structures) of glycoproteins or released glycans. When these glycoconjugates are applied serially or in parallel to lectin-immobilized columns, information regarding the glycan motifs can be obtained. We demonstrate lectin affinity chromatographic methods for determining O-linked glycan structures of MUC1 purified from a breast cancer cell line, YMB-S, N-linked glycan structures of serum prostate-specific antigen from prostate cancer, and serum alkaline phosphatases from choriocarcinoma. These lectin-fractionated samples are analyzed quantitatively by measuring radioactivity, antigen contents are analyzed using enzyme-linked immunosorbent assay, and enzymatic activities are assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Valki A (1993) Biological roles of oligosaccharides: all of theories are correct. Glycobiology 3:97–130

    Article  Google Scholar 

  2. Vliegenthart JFG, Kamerling JP (2007) 1H-NMR structural-reporter-group concepts in carbohydrate analysis. In: Kamerling JP (ed) Comprehensive glycoscience, vol 2. Elsevier Ltd, Oxford, pp 133–191

    Chapter  Google Scholar 

  3. Dell A, Morris HR (2001) Glycoprotein structure determination by mass spectrometry. Science 291:2351–2356

    Article  PubMed  CAS  Google Scholar 

  4. Geyer R, Geyer H (1994) Saccharide linkage analysis using methylation and other techniques. In: Lennarz WJ, Hart GW (eds) Methods in enzymology, vol 230. Academic, San Diego, pp 86–108

    Google Scholar 

  5. Cummings RD, Etzler ME (2009) Antibodies and lectins in glycan analysis. In: Varki A, Cummings RD, Esko JD, Freeze H, Hart G, Marth J (eds) Essentials of glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, New York, Chapter 45

    Google Scholar 

  6. Kobata A, Yamashita K (1993) Fractionation of oligosaccharides by serial affinity chromatography with use of immobilized lectin columns. In: Fukuda M, Kobata A (eds) Practical approach-glycoprotein analysis. Oxford University Press, New York, pp 103–125

    Google Scholar 

  7. Seko A, Ohkura T, Ideo H et al (2012) Novel O-linked glycans containing 6’-sulfo-Gal/GalNAc of MUC1 secreted from human breast cancer YMB-S cells: possible carbohydrate epitopes of KL-6(MUC1) monoclonal antibody. Glycobiology 22:181–195

    Article  PubMed  CAS  Google Scholar 

  8. Fukushima K, Satoh T, Baba S et al (2010) α-1,2-Fucosylated and β-N-acetylgalactosaminylated prostate-specific antigen as an efficient marker of prostatic cancer. Glycobiology 20:452–460

    Article  PubMed  CAS  Google Scholar 

  9. Fukushima K, Hara-Kuge S, Seko A et al (1998) Elevation of α2-6sialyltransferase and α1-2fucosyltransferase in human choriocarcinoma. Cancer Res 58:4301–4306

    PubMed  CAS  Google Scholar 

  10. Cuatrecasas P, Anfinsen CB (1971) Affinity chromatography. In: Jakohy WS (ed) Methods in enzymology. Academic, New York, pp 345–378

    Google Scholar 

  11. Ohkura T, Seko A, Hara-Kuge S et al (2002) Occurrence of secretory glycoprotein-specific GalNAcβ1-4GlcNAc sequence in N-glycans in MDCK cells. J Biochem 132:891–901

    Article  PubMed  CAS  Google Scholar 

  12. Ohkura T, Hada T, Higashino K et al (1994) Increase of fucosylated serum cholinesterase in relation to high risk groups for hepatocellular carcinomas. Cancer Res 54:55–61

    PubMed  CAS  Google Scholar 

  13. Yamashita K, Umetsu K, Suzuki T et al (1988) Carbohydrate binding specificity of immobilized Allomyrina dichotoma lectin II. J Biol Chem 263:17482–17489

    PubMed  CAS  Google Scholar 

  14. Yamashita K, Umetsu K, Suzuki T et al (1992) Purification and characterization of a Neu5Acα2 → 6Galβ1 → 4GlcNAc and HSO3 − → 6Galβ1 → 4GlcNAc specific lectin in tuberous roots of Trichosanthes japonica. Biochemistry 31:11647–11650

    Article  PubMed  CAS  Google Scholar 

  15. Wang WC, Cummings RD (1988) The immobilized leukoagglutinin from the seeds of Maackia amurensis binds with high affinity to complex-type Asn-linked oligosaccharides containing terminal sialic acid-linked α2,3 to penultimate galactose residues. J Biol Chem 263:4576–4585

    PubMed  CAS  Google Scholar 

  16. Shibuya N, Goldstein IJ, Broekaert WF et al (1987) The elderberry (Sambucus nigra L.) bark lectin recognizes the Neu5Ac(α2-6)Gal/GalNAc sequence. J Biol Chem 262:1596–1601

    PubMed  CAS  Google Scholar 

  17. Kochibe N, Matta KL (1989) Purification and properties of an N-acetylglucosamine-specific lectin from Psathyrella velutina mushroom. J Biol Chem 264:173–177

    PubMed  CAS  Google Scholar 

  18. Ideo H, Seko A, Ohkura T et al (2002) High-affinity binding of recombinant human galectin-4 to SO3 − → 3Galβ1 → 3GalNAc pyranoside. Glycobiology 12:199–208

    Article  PubMed  CAS  Google Scholar 

  19. Smith DF, Torres BV (1989) Lectin affinity chromatography of glycolipids and glycolipid-derived oligosaccharides. In: Ginsburg V (ed) Methods in enzymology, vol 179. Academic, New York, pp 30–45

    Google Scholar 

  20. Hindgaul O, Norberg T, Le Pendu J et al (1982) Synthesis of type 2 human blood-group antigenic determinants. The H, X and Y haptens and variations of the H type 2 determinants probes for the combining site of the lectin I of Ulex europaeus. Carbohydr Res 109:109–142

    Article  Google Scholar 

  21. Kornfeld K, Reitman ML, Kornfeld R (1981) The carbohydrate-binding specificity of pea and lentil lectins: fucose is an important determinant. J Biol Chem 256:6633–6640

    PubMed  CAS  Google Scholar 

  22. Yamashita K, Kochibe N, Ohkura T et al (1985) Fractionation of L-fucose-containing oligosaccharides on immobilized Aleuria aurantia lectin. J Biol Chem 260:4688–4693

    CAS  Google Scholar 

  23. Yamashita K, Totani K, Ohkura T et al (1987) Carbohydrate binding properties of complex-type oligosaccharides on immobilized Datura stramonium lectin. J Biol Chem 262:1602–1607

    PubMed  CAS  Google Scholar 

  24. Baenziger JU, Fiete D (1979) Structural determinants of concanavalin A specificity for oligosaccharides. J Biol Chem 254:2400–2407

    PubMed  CAS  Google Scholar 

  25. Hoyer LL, Roggentin P, Schauer R et al (1991) Purification and properties of cloned Salmonella typhimurium LT2 sialidase with virus: typical kinetic preference for sialyl α2-3 linkages. J Biochem 110:29–41

    Google Scholar 

  26. Uchida Y, Tsukada Y, Sugimori T (1974) Production of microbial neuraminidase induced by colominic acid. Biochim Biophys Acta 350:425–431

    Article  PubMed  CAS  Google Scholar 

  27. Fukushima K, Hada T, Higashino K et al (1998) Elevated serum levels of Trichosanthes japonica agglutinin-I binding alkaline phosphatase in relation to high-risk groups for hepatocellular carcinomas. Clin Cancer Res 4:2771–2777

    PubMed  CAS  Google Scholar 

  28. Kiyohara T, Terao T, Shioiri-Nakano K, Osawa T (1976) Purification and characterization of β-N-acetylhexosaminidase, and β-galactosidase from Streptococcus 6646K. J Biochem 80: 9–17

    PubMed  CAS  Google Scholar 

  29. Li YT, Li SC (1972) α-Mannosidase, β-N-acetylhexosaminidase, and β-galactosidase from jack bean meal. In: Ginsburg V (ed) Methods in enzymology. Academic, New York, pp 702–713

    Google Scholar 

  30. Endo T, Ohbayashi H, Ikehara Y et al (1988) Structural study on the carbohydrate moiety of human placental alkaline phosphatase. J Biochem 103:182–187

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by JSPS KAKENHI, Grant Number 24590345, in Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsuko Yamashita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Yamashita, K., Ohkura, T. (2014). Determination of Glycan Motifs Using Serial Lectin Affinity Chromatography. In: Hirabayashi, J. (eds) Lectins. Methods in Molecular Biology, vol 1200. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1292-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1292-6_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1291-9

  • Online ISBN: 978-1-4939-1292-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics