Skip to main content
Log in

Evidence for flame extinguishment by thermal mechanisms

  • Published:
Fire Technology Aims and scope Submit manuscript

Abstract

This paper presents an analysis of experimental flame and detonation extinguishment data published by a number of authors, including those in a companion paper. The maximum effectiveness observed for each of five common dry chemicals at small particle diameters is shown to be related to heat extraction from the flame by active endothermic sinks—heat capacity, fusion, vaporization, and decomposition. Larger particles are more stable in the flame and the reduced level of effectiveness observed is due principally to the only active sink—heat capacity.

Evidence is presented to support two propositions: first, that the strong chemical inhibiting effects exhibited by many substances in flame velocity studies are effectively confined to low-concentration regimes; and second, that regardless of chemical effects, diffusion flames of the type studied are largely extinguished by thermal or heat extraction mechanisms at extinguishant concentrations that are quantitatively predicted by a simple heat balance and a predictable limit temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ewing, C.T., Faith, F.R., Hughes, J.T., & Carhart, H.W., “Flame extinguishing properties of dry chemicals: Extinction concentrations for small diffusion pan fires,”Fire Technology 25 2 p. 134 (1989).

    Google Scholar 

  2. Ewing, C.T., Hughes, J.T., & Carhart, H.W., “The extinction of hydrocarbon flames based on the heat-absorption processes which occur in them,”Fire and Materials 8 p. 148 (1984).

    Google Scholar 

  3. Rosser, W.A., Jr., Inami, S.H., & Wise, H., “The effect of metal salts on premixed hydrocarbon-air flames,”J. Comb. Flame 7 p. 107 (1963).

    Google Scholar 

  4. Dewitte, M., Vrebosch, J., & van Tiggelen, A., “Inhibition and extinction of premixed flames by dust particles,”J. Comb. Flame 8 p. 257 (1964).

    Google Scholar 

  5. Baratov,A.N., “Heterogeneous flame inhibition and powder fire extinguishers,”Zhurnal Vses. Khim. Ob-va im. Mendeleeva 19 p. 531 (1974).

    Google Scholar 

  6. Sheinson, R.S., Hahn, J.E., Geary, K., & Williams, F.W., “Quantification of physical fire suppression of heptane pool fires,” Eastern Section, Fall Meeting, Combustion Institute (1977).

  7. Larsen, E.R., “Halogen fire suppressants,”American Chemical Society Symp. Series 16 p. 376 (1975).

    Google Scholar 

  8. Larsen, E.R., “Mechanisms of flame inhibition II. A new principle of flame suppression,”Fire Retardant Chemistry 2 p. 5 (1975).

    Google Scholar 

  9. Huggett, C., “Habitable atmospheres which do not support combustion,”J. Comb. Flame 20 p. 140 (1973).

    Google Scholar 

  10. McCamy, C.S., Schoub, H., & Lee, T.G., “Fire extinguishment by means of dry powder,”Sixth Symp. (Int.) on Combustion The Combustion Institute, Pittsburgh, PA, p. 795 (1957).

    Google Scholar 

  11. Mitani, T. & Niioka, T., “Comparison of experiments and theory on heterogeneous flame suppressants,”Nineteenth Symp. (Int.) on Combustion The Combustion Institute, Pittsburgh, PA, p. 869 (1983).

    Google Scholar 

  12. Mitani, T., “A flame inhibition by inert dust and spray,”J. Comb. Flame 43 p. 243 (1981).

    Google Scholar 

  13. Mitani, T., “A study of thermal and chemical effects of heterogeneous flame suppressants,”J. Comb. Flame 44 p. 247 (1982).

    Google Scholar 

  14. Mitani, T., “Flame retardant effects of CF3Br and NaHCO3,”J. Comb. Flame 50 p. 177 (1983).

    Google Scholar 

  15. Grumer, J., “Recent research concerning extinguishment of coal dust explosives,”Fifteenth Symp. (Int.) on Combustion The Combustion Institute, Pittsburgh, PA, p. 103 (1974).

    Google Scholar 

  16. Choi, T., Rahimian, S., & Essenhigh, R.H., “Studies in coal dust explosions: Influence on extinction of high intensity coal dust flames, etc.,”Twenty-first Symp. (Int.) on Combustion The Combustion Institute, Pittsburgh, PA, Book of Abstracts p. 9 (1986).

    Google Scholar 

  17. Tatem, P.A., Gann, R.G., & Carhart, H.W., “Pressurization with nitrogen as an extinguishant for fires in confined spaces,”Combustion Science and Technology 7 p. 213 (1973). (ibid.,9, p. 255, 1974).

    Google Scholar 

  18. Bulewicz, E.M., Jones, G., & Padley, P.J., “Temperature of metal oxide particles in flames,”J. Comb. Flame 13 p. 409 (1969).

    Google Scholar 

  19. Dobrikov, V.V. & Baratov, A.N.,Combustion and Fire Suppression Problem Conference Proceedings, 5th, Moscow, p. 23 (1977).

  20. Iya, K.S., Wollowitz, S., & Kaskan, W.E., “The mechanism of flame inhibition by sodium salts,”Fifteenth Symp. (Int.) on Combustion The Combustion Institute, Pittsburgh, PA, p. 329 (1976).

    Google Scholar 

  21. Ewing, C.T., Faith, F.R., Romans, J.B., Hughes, J.T., & Carhart, H.W., “Flame extinguishing properties of dry chemicals: Extinction weights for small diffusion pan fires,” in publication.

  22. Ewing, C.T., Faith, F.R., Romans, J.B., Siegmann, C.W., Ouellette, R.J., Hughes, J.T., & Carhart, H.W., “The extinguishment of class B fires by dry chemicals: Scaling studies,” in publication.

  23. “JANAF thermodynamic tables,”J. Phys. Chem. Ref. Data,14, Suppl. 1 (1985).

  24. Karachinskii, S.V., Dragalov, V.V., Chimishkye, A.I., & Tsvetkov, V.Yu., “Reaction of urea with alkali metal carbonates,”Zhurnal Organicheskoi Khimii Vol.23 p. 93 (1987).

    Google Scholar 

  25. Birchall, J.D., “On the mechanism of flame inhibition by alkali metal salts,”J. Comb. Flame 14 p. 85 (1970).

    Google Scholar 

  26. Woolhouse, R.A. & Sayers, D.R., “Monnex compared with other potassium based chemicals,”Fire Journal, 1 p. 85 (1973).

    Google Scholar 

  27. Laffitte, P., Delbourga, R., Combourieu, J., & Dumont, J.C., “The influence of particle diameter on the specificity of fire powders on the extinction of flames,”J. Comb. Flame 9 p. 357 (1965).

    Google Scholar 

  28. Benson, S.W.,Thermochemical Kinetics; Methods for the Estimation of Thermochemical Data and Rate Parameters 2nd Ed., John Wiley and Sons, New York (1972).

    Google Scholar 

  29. Rosser, W.A., Jr., Inami, S.H. & Wise, H., “The quenching of premixed flames by volatile inhibitors,”J. Comb. Flame 10 p. 287 (1966).

    Google Scholar 

  30. Mills, R.M., “Flame inhibition with electron attachment as the first step,”J. Comb. Flame 23 p. 513 (1968).

    Google Scholar 

  31. Bulewicz, E.M. & Kucnerocwicz-Polak, B.J., “The action of sodium bicarbonate and of silica powder on upward propagating flame in a vertical duct,”J. Comb. Flame 70 p. 127 (1987).

    Google Scholar 

  32. Dolan J.E. & Dempster, J., “The suppression of methane-air ignitions by fine powders,”J. Appl. Chem. 5 p. 510 (1955).

    Google Scholar 

  33. Parker, V.B., Wagman, D.D. & Evans, W.H., “Selected values of chemical thermodynamic properties,” NBS Technical Note 270-6 (1971).

  34. Wagman, D.D., Evans, W.H., Parker, V.N., Schumm, R.H. & Nuttall, R.L., “Selected values of chemical thermodynamic properties,” NBS Technical Note 270-8 (1981).

  35. Domalski, E.S., “Selected values of heats of combustion and heats of formation of organic compounds,”J. Phys. Chem. Ref. Data 1 p. 221 (1972).

    Google Scholar 

  36. Hardy, W.A. & Linnett, J.W., “Mechanisms of atom recombination on surfaces,”Eleventh Symp. (Int.) on Combustion The Combustion Institute, Pittsburgh, PA, p. 167 (1967).

    Google Scholar 

  37. Bulewicz, E.M. & Padley, P.J., “Catalytic effect of metal additives on free radical recombination rates in H2 + O2 + N2 flames,”Thirteenth Symp. (Int.) on Combustion The Combustion Institute, Pittsburgh, PA, p. 73 (1971).

    Google Scholar 

  38. Lask, G. & Wagner, H.G., “Influence of additives on the velocity of laminar flames,”Eighth Symp. (Int.) on Combustion The Combustion Institute, Pittsburgh, PA, p. 432 (1962).

    Google Scholar 

  39. Holmstedt, G.S., Persson, H. & Saewemark, G.,”Extinguishing diffusion flames with dry powder and halon at low Froude numbers,” Report SP.RAPP;24, 1986.

  40. Ronney, P.D., “Effect of gravity on hydrocarbon flame retardant effectiveness,”Acta Astronautica 12 p. 915 (1985).

    Google Scholar 

  41. Vanpee, M. & Shirodkar, P.P., “A study of flame inhibition by metal compounds,”Seventeenth Symp. (Int.) on Combustion, Leeds, England, p. 787 (1978); The Combustion Institute, Pittsburgh, PA (1979).

    Google Scholar 

  42. Takagi, H., Takiguchi, I. & Higashi, T., “Suppression of flame propagation of methane layer by halon (1301),”Saiko to Hoan 29 p. 461 (1983).

    Google Scholar 

  43. Hirst, R. & Booth, V., “Measurement of flame extinguishing concentrations,”Fire Technology 13 p. 296 (1977).

    Google Scholar 

  44. Seeger, P.G., “A laboratory test method for evaluating the extinguishing efficiency of dry powder,”AGARD Conf. Proceedings 166 Paper 24 (1975).

    Google Scholar 

  45. Baratov, A.N., Vogman, L.P., Kobzar, V.N., Azatyan, V.V., Museridze, M.D., Dzotsenidze, Z.G., Petviashvile, D.I. & Namoradze, M.A., “Inhibition of a methane flame by suspensions of salts,”Fizika Goreniya i Vzryva 12 p. 72 (1976).

    Google Scholar 

  46. Bezapashvile, G.S., Baratov, A.N., Azatyan, V.V., Museridze, M.D., Dzotsenidze, Z.G. & Kobzar', V.N., “Methane flame inhibition by inorganic salt powders. I potassium sulfate,”Kinetika i Katalilz 20 p. 584 (1979).

    Google Scholar 

  47. Bezapashvile, G.S., Baratov, A.N., Azatyan, V.V., Museridze, M.D., Dzotsenidze, Z.G. & Kobzar', V.N., “Methane flame inhibition by inorganic salt powders. II Sodium carbonate,”Kinetika i Katalilz 20 p. 589 (1979).

    Google Scholar 

  48. Abuladze, M.K., Bezar, G.S., Bezapashvile, G.S., Lordkipanidze, D.N., Dzotsenidze, A.G. & Museridze, M.D., “Study of the inhibition of hydrogen-air mixture combustion by sodium sulfate and sodium fluoride,”Soobshch. Akad. Nauk Grus. SSR 112 p. 333 (1983).

    Google Scholar 

  49. Azatyan, V.V., “Kinetic aspects of chemical methods for the prevention and extinction of fires,”Zhur. Vses. Khim. Ob-va im. Mendeleeva 30 p. 4 (1985).

    Google Scholar 

  50. Baratov. A.N., “The use of combustion inhibitors for extinguishing fires,”Zhur. Vses. Khim. Ob-va im. Mendeleeva 30 p. 13 (1985).

    Google Scholar 

  51. Friedrich, M., “Extinguishing action of powders,”Fire Res. Abst. and Rev. 2 p. 132 (1960).

    Google Scholar 

  52. Iya, K.S., Wollowitz, S. & Kaskan, W.E., “The measure of the inhibition of quenched premixed flames,”J. Comb. Flame 22 p. 415 (1974).

    Google Scholar 

  53. Friedman, R. & Levy, J.B., “Inhibition of Opposed-jet methane-air diffusion flame. The effects of alkali metal vapours and organic halides,”J. Comb. Flame 7 p. 195 (1963).

    Google Scholar 

  54. Rosser, W.A., Wise, H. & Miller, J., “Mechanism of combustion inhibition by compounds containing halogens,”Seventh Symp. (Int.) on Combustion The Combustion Institute, Pittsburgh, PA, p. 175 (1959).

    Google Scholar 

  55. Lerner, W.R. & Cagliostro, D.E., “Flame inhibition by hydrogen halides: Some spectroscopic measurements,”J. Comb. Flame 21 p. 315 (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ewing, C.T., Faith, F.R., Hughes, J.T. et al. Evidence for flame extinguishment by thermal mechanisms. Fire Technol 25, 195–212 (1989). https://doi.org/10.1007/BF01039778

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01039778

Key words

Navigation