Skip to main content
Log in

Initial state and transition state contributions to reactivity in mercury(II)-catalysed aquation of thetrans-[Rh(en)2Cl2]+, [Cr(NH3)5Cl]2+, andcis-[Cr(NH3)4(OH2)Cl]2+ cations in binary aqueous solvent mixtures

  • Full Papers
  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Summary

Rate constants are reported for mercury(II)-catalysed aquation of thetrans-[Rh(en)2Cl2]+, [Cr(NH3)5Cl]2+, andcis-[Cr(NH3)4(OH2)Cl]2+ cations in water and in methanol-, ethanol-, and acetonitrile-water solvent mixtures. In the case oftrans-[Rh(en)2Cl2]+, the dependence of rate constants on mercury(II) concentration indicates reaction through a binuclear (Rh-Cl-Hg bridged) intermediate. The dependence of the equilibrium constant for the formation of this intermediate and of its rate constant for dissociation (loss of HgCl+) on solvent composition have been established. With the aid of measured solubilities, published ancillary thermodynamic data, and suitable extrathermodynamic assumptions, the observed reactivity trends for these mercury(II)-catalysed aquations are dissected into initial state and transition state components. The reactivity patterns for these three complexes are compared with those for mercury(II)-catalysed aquation of other chloro-transition metal complexes, particularlycis-[Rh(en)2Cl2]+, [Co(NH3)5Cl]2+, and [ReCl6]2−.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. H. Abraham, G. F. Johnston, J. F. C. Oliver and J. A. Richards,J. Chem. Soc. Chem. Commun., 930 (1969).

  2. M. J. Blandamer and J. Burgess,Pure Appl. Chem., 51, 2087 (1979).

    Google Scholar 

  3. M. J. Blandamer and J. Burgess,Coord. Chem. Rev., 31, 93 (1980).

    Google Scholar 

  4. E.g., P. Moore,Inorg. React. Mechanism, 5, 184 (1977);6, 198 (1979);7, 179 (1981); and refs. therein.

    Google Scholar 

  5. V. V. Tatarchuk and A. V. Belyaev,Koord. Khim., 4, 1059 (1978).

    Google Scholar 

  6. M. J. Blandamer, J. Burgess and R. I. Haines,J. Chem. Soc. Dalton Trans., 607 (1980).

  7. J. L. Armstrong, M. J. Blandamer, J. Burgess and A. Chew,J. Inorg. Nucl. Chem., 43, 173 (1981).

    Google Scholar 

  8. J. Burgess and A. J. Duffield,J. Inorg. Nucl. Chem., 42, 1531 (1980).

    Google Scholar 

  9. J. Burgess, K. W. Bowker, E. R. Gardner and F. M. Mekhail,J. Inorg. Nucl. Chem., 41, 1215 (1979).

    Google Scholar 

  10. See,e.g., P. R. Adby and M. A. H. Dempster,Introduction to Optimization Methods, Chapman and Hall, London (1974).

    Google Scholar 

  11. A. Ogard and H. Taube,J. Am. Chem. Soc., 80, 1084 (1958); W. A. Levine, T. P. Jones, W. E. Harris and W. J. Wallace,ibid., 83, 2453 (1961); L. Mønsted and O. Mønsted,Acta Chem. Scand., 28A, 569 (1974).

    Google Scholar 

  12. D. W. Hoppenjans, J. B. Hunt and C. R. Gregoire,Inorg. Chem., 7, 2506 (1968).

    Google Scholar 

  13. L. Mønsted and O. Mønsted,Acta Chem. Scand., 28A, 23 (1974).

    Google Scholar 

  14. W. W. Fee, W. G. Jackson and P. D. Vowles,Austral. J. Chem., 25, 459 (1972).

    Google Scholar 

  15. See,e.g., N. Al-Shatti, T. Ramasami and A. G. Sykes,J. Chem. Soc. Dalton Trans., 74 (1977); and refs. therein.

  16. D. A. Palmer, R. van Eldik, T. P. Dasgupta and H. Kelm,Inorg. Chim. Acta, 34, 91 (1979).

    Google Scholar 

  17. J. H. Espenson and S. R. Hubbard,Inorg. Chem., 5, 686 (1966).

    Google Scholar 

  18. E. g., E. Grunwald and S. Winstein,J. Am. Chem. Soc., 70, 846 (1948); P. R. Wells,Chem. Rev., 63, 171 (1963).

    Google Scholar 

  19. J. Burgess and M. G. Price,J. Chem. Soc. A, 3108 (1971).

    Google Scholar 

  20. J. Burgess and A. J. Duffield,J. Pharm. Pharmacol. to be submitted.

  21. N. Ise, M. Ishikawa, Y. Taniguchi and K. Suzuki,Polymer Lett., 14, 667 (1976).

    Google Scholar 

  22. A. Seidell,Solubilities of Inorganic and Metal Organic Compounds, 3rd. edn., Vol. 1, Van Nostrand, New York, 1940, p. 444.

    Google Scholar 

  23. J. Burgess,J. Chem. Soc. Dalton Trans., 825 (1973).

  24. S. N. Anderson and F. Basolo,Inorg. Synth., 7, 217 (1963).

    Google Scholar 

  25. O. T. Christensen,Z. Anorg. Chem., 4, 229 (1893); M. Mori,Inorg. Synth., 5, 132 (1957).

    Google Scholar 

  26. J. Springborg and C. E. Schäffer,Inorg. Synth., 18, 75 (1978).

    Google Scholar 

  27. A. J. Gordon and R. A. Ford,The Chemist's Companion, Wiley, New York (1972).

    Google Scholar 

  28. M. J. Blandamer, J. Burgess and P. Wellings,Transition Met. Chem., 6, 364 (1981).

    Google Scholar 

  29. P. Moore,Trans. Faraday Soc., 68, 1890 (1972).

    Google Scholar 

  30. J. Burgess,Metal Ions in Solution, Ellis Horwood, Chichester, 1978, chap. 10.

    Google Scholar 

  31. E.g., G. Wittig, G. Keicher, A. Rückert and P. Raff,Annalen, 563, 110 (1949); J. N. Cooper and R. E. PoweU,J. Am. Chem. Soc., 85, 1590 (1963); G. Baum,J. Organometal. Chem., 22, 269 (1970).

    Google Scholar 

  32. R. D. Gillard and G. Wilkinson,J. Chem. Soc., 3193 (1963).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adeniran, A.O., Baker, G.J., Bennett, G.J. et al. Initial state and transition state contributions to reactivity in mercury(II)-catalysed aquation of thetrans-[Rh(en)2Cl2]+, [Cr(NH3)5Cl]2+, andcis-[Cr(NH3)4(OH2)Cl]2+ cations in binary aqueous solvent mixtures. Transition Met Chem 7, 183–187 (1982). https://doi.org/10.1007/BF01035839

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01035839

Keywords

Navigation