Skip to main content
Log in

Observations of precipitating convective systems at 92 and 183 GHz: Aircraft results

  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Summary

High spatial resolution data from an airborne microwave imaging radiometer operating at 92 and 183 GHz (0.32 and 0.16 cm wavelengths) are compared with ground-based radar data for a series of observations of precipitating convective systems. An inverse relationship between microwave brightness temperature (T B ) and radar-derived rain rate (RR) is observed. Differences in the empirical curves between midlatitude and tropical cloud systems are related to the differing microphysical and dynamical environments.

ColdT B features in the aircraft images are collocated with high reflectivity values in the radar data. Over a water back-ground, which has a low surface emissivity at these frequencies, small convection produces an increase inT B at 92 GHz due to emission by liquid water in the cloud. As the convection deepens and ice forms,T B at both frequencies decreases rapidly with increasing rain rate. The large decrease inT B with increasing storm intensity is due to scattering of upwelling radiation by precipitation-sized ice particles within the clouds. With high rain rates, there is little difference betweenT B observed over both land and water backgrounds.

TheT B features in the aircraft imagery are qualitatively similar to radar echoes in plan position indicator (PPI) images. Areas of extremely coldT B (<150 K) coincide with high radar reflectivities. The highest correlations between microwave and radar features with regard to location, intensity, and shape occur more frequently with mid-to upperlevel echoes rather than low-level reflectivity features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brown, K. S., 1981: Cloud top scanning radiometer (CTS) user's guide. NASA Tech. Memo. 83887, Goddard Space Flight Center, 24 pp.

  • Curran, r. J., Kyle, H. L., Blaine, L. R., Smith, J., Clem, T. D., 1981: Multichannel scanning radiometer for remote sensing cloud physical parameters.Rev. Sci. Instrum.,52, 1546–1555.

    Google Scholar 

  • Gagliano, J. A., McCheehy, J. J., 1981: Advanced microwave moisture sounder (AMMS) for WB-57F CCOPE mission. Tech. report for Project A-2904, Georgia Institute of Technology, 40 pp.

  • Griffith, C. G., Woodley, W. L., Grube, P. G., Martin, D. W., Stout, J. E., Sikdar, D. N., 1978: Rain estimation from geosynchronous satellite imagery—visible and infrared studies.Mon. Wea. Rev.,106, 1153–1171.

    Google Scholar 

  • Heymsfield, G. M., Fulton, R., 1988: Comparison of highaltitude remote aircraft measurements with the radar structure of an Oklahoma thunderstorm: Implications for precipitation estimation from space. Accepted inMon. Wea. Rev.

  • Heymsfield, G. M., Ghosh, K. K., Chen, L. C., 1983: An interactive system for compositing digital radar and satellite data.J. Climate Appl. Meteor.,22, 705–713.

    Google Scholar 

  • Hollinger, J. P., Lerner, R. M., Troy, B. E., Wisler, M. M., 1978: Joint services 5D-2 microwave scanner definition study. Naval Research Laboratory Memorandum Report 3807. Washington, D.C., 66 pp.

  • Huang, R., Liou, K.-N., 1983: Polarized microwave radiation transfer in precipitating cloudy atmospheres: application to window frequencies.J. Geophys. Res.,88, D3885-D3893.

    Google Scholar 

  • Lamb, D., Hallett, J., 1982: Glaciating characteristics of Montana and Florida summer cumuli: Comparisons based on observations and modeling. Preprints, Conf. on Cloud Physics, Chicago, IL, Amer. Meteor. Soc., 374–377.

  • National Oceanic and Atmospheric Administration, 1982:National Weather Service Radar Code User's Guide. U.S. Department of Commerce, 184 pp.

  • Prabhakara, C., Short, D. A., Wiscombe, W., Fraser, R. S., Vollmer, B. E., 1986: Rainfall over oceans inferred from Nimbus-7 SMMR: Application to 1982–1983 El Niño.J. Climate Appl. Meteor.,25, 1464–1474.

    Google Scholar 

  • Rodgers, E. B., Siddalingaiah, H., Chang, A. T. C., Wilheit, T. T., 1979: A statistical technique for determining rainfall over land employing Nimbus-6 ESMR measurements.J. Appl. Meteor.,18, 978–991.

    Google Scholar 

  • Savage, R. C., 1978: The radiative properties of hydrometeors at microwave frequencies.J. Appl. Meteor.,17, 904–911.

    Google Scholar 

  • Savage, R. C., Burgess, L., Shipley, B., 1987: The Defense Meteorological Satellite Program (DMSP) Microwave Imager (SSM/I). Passive Microwave Observing from Satellites, Williamsburg, VA, NOAA, V-3.

    Google Scholar 

  • Savage, R. C., Weinman, J. A., 1975: Preliminary calculations of upwelling radiance from rainclouds at 37.0 and 19.35 GHz.Bull. Amer. Meteor. Soc.,56, 1272–1274.

    Google Scholar 

  • Shenk, W. E., Adler, R. F., Chesters, D., Susskind, J., Uccellini, L., 1985: The rationale and suggested approaches for research geosynchronous satellite measurements for severe storm and mesoscale investigations. NASA Tech. Memo. 86185, Goddard Space Flight Center, 29 pp.

  • Spencer, R. W., 1986: A satellite passive 37 GHz scattering based method for measuring oceanic rain rates.J. Climate Appl. Meteor.,25, 754–766.

    Google Scholar 

  • Spencer, R. W., Martin, D. W., Hinton, B. B., Weinman, J. A., 1983a: Satellite microwave radiances correlated with radar rain rates over land.Nature,304, 141–143.

    Google Scholar 

  • Spencer, R. W., Olson, W. S., Rongzhang, W., Martin, D. W., Weinman, J. A., Santek, D. A., 1983b: Heavy thunderstorms observed over land by the Nimbus-7 Scanning Multichannel Microwave Radiometer.J. Climate Appl. Meteor.,22, 1041–1046.

    Google Scholar 

  • Spinhirne, J. D., Hansen, M. Z., Caudill, L. O., 1982: Cloud top remote sensing by airborne lidar.Appl. Opt.,22, 1564–1571.

    Google Scholar 

  • Spinhirne, J. D., Hansen, M. Z., Simpson, J., 1983: The structure and phase of cloud tops as observed by polarization lidar.J. Climate Appl. Meteor.,22, 1319–1331.

    Google Scholar 

  • Stout, J. E., Martin, D. W., Sikdar, D. N., 1979: Estimating GATE rainfall with geosynchronous satellite images.Mon. Wea. Rev.,107, 585–598.

    Google Scholar 

  • Szejwach, G., Adler, R. F., Jobard, I., Mack, R. A., 1986: A cloud model—radiative transfer model for determining microwaveT B -rain rate relations. Preprints, 2nd Conf. Satellite Meteor./Remote Sensing and Applications, Williamsburg, VA, Amer. Meteor. Soc., 444–449.

  • Weinman, J. A., Guetter, P. J., 1977: Determination of rainfall distributions from microwave radiation measured by the Nimbus-6 ESMR.J. Climate Appl. Meteor.,16, 437–442.

    Google Scholar 

  • Wilheit, T. T., 1986: Some comments on passive measurements of rain.Bull. Amer. Meteor. Soc.,67, 1226–1232.

    Google Scholar 

  • Wilheit, T. T., Chang, A. T. C., King, J. L., Rodgers, E. B., Nieman, R. A., Krupp, B. M., Milman, A. S., Stratigos, J. S., Siddalingaiah, H., 1982: Microwave radiometric observations near 19.35, 92 and 183 GHz of precipitation in Tropical Storm Cora.J. Appl. Meteor.,21, 1137–1145.

    Google Scholar 

  • Wilheit, T. T., Chang, A. T. C., Rao, M. S. V., Rodgers, E. B., Theon, J. S., 1977: A satellite technique for quantitatively mapping raifall rates over the oceans.J. Appl. Meteor.,16, 551–560.

    Google Scholar 

  • Wu, M.-L., 1985: Quality of remote sensing measurements of cloud physical parameters in the Convective Cooperative Convective Precipitation Experiment.J. Geophys. Res.,90, 10551–10562.

    Google Scholar 

  • Wu, R., Weinman, J. A., 1984: Microwave radiances from precipitating clouds containing aspherical ice, combined phase, and liquid hydrometeors.J. Geophys. Res.,89, 7170–7178.

    Google Scholar 

  • Yeh, H.-Y. M., Wu, M.-L. C., Curran, R. J., 1983: Experiments on the retrieval of cloud parameters from the AMMS and MCR data. Preprints, 5th Conf. on Atmospheric Radiation, Baltimore, MD, Amer. Meteor. Soc., 68–71.

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 12 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hakkarinen, I.M., Adler, R.F. Observations of precipitating convective systems at 92 and 183 GHz: Aircraft results. Meteorl. Atmos. Phys. 38, 164–182 (1988). https://doi.org/10.1007/BF01029780

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01029780

Keywords

Navigation