Skip to main content

Structure and Dynamical Influence of Water Vapor in the Lower Tropical Troposphere

  • Chapter
  • First Online:
Shallow Clouds, Water Vapor, Circulation, and Climate Sensitivity

Abstract

In situ, airborne and satellite measurements are used to characterize the structure of water vapor in the lower tropical troposphere—below the height, z*, of the triple-point isotherm, T*. The measurements are evaluated in light of understanding of how lowertropospheric water vapor influences clouds, convection and circulation, through both radiative and thermodynamic effects. Lower-tropospheric water vapor, which concentrates in the first few kilometers above the boundary layer, controls the radiative cooling profile of the boundary layer and lower troposphere. Elevated moist layers originating from a preferred level of convective detrainment induce a profile of radiative cooling that drives circulations which reinforce such features. A theory for this preferred level of cumulus termination is advanced, whereby the difference between T* and the temperature at which primary ice forms gives a ‘first-mover advantage’ to glaciating cumulus convection, thereby concentrating the regions of the deepest convection and leading to more clouds and moisture near the triple point. A preferred level of convective detrainment near T* implies relative humidity reversals below z* which are difficult to identify using retrievals from satellite-borne microwave and infrared sounders. Isotopologues retrievals provide a hint of such features and their ability to constrain the structure of the vertical humidity profile merits further study. Nonetheless, it will likely remain challenging to resolve dynamically important aspects of the vertical structure of water vapor from space using only passive sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anthes RA (1977) A cumulus parameterization scheme utilizing a one-dimensional cloud model. Mon Weather Rev 105(3):270–286

    Google Scholar 

  • Becker T, Stevens B, Hohenegger C (2017) Imprint of the convective parameterization and sea-surface temperature on large-scale convective self-aggregation. J Adv Model Earth Syst. https://doi.org/10.1002/2016MS000865

  • Bergemann M, Jakob C (2016) How important is tropospheric humidity for coastal rainfall in the tropics? Geophys Res Lett 43(11):5860–5868

    Google Scholar 

  • Bony S, Emanuel KA (2005) On the role of moist processes in tropical intraseasonal variability: cloud–radiation and moisture–convection feedbacks. J Atmos Sci 62(8):2770–2789

    Google Scholar 

  • Bony S, Stevens B, Coppin D, Becker T, Reed KA, Voigt A, Medeiros B (2016) Thermodynamic control of anvil cloud amount. Proc Natl Acad Sci 113(32):8927–8932

    Google Scholar 

  • Bretherton CS, Peters ME, Back LE (2004) Relationships between water vapor path and precipitation over the tropical oceans. J Clim 17(7):1517–1528

    Google Scholar 

  • Brogniez H, Kirstetter PE, Eymard L (2013) Expected improvements in the atmospheric humidity profile retrieval using the Megha-Tropiques microwave payload. QJR Meteorol Soc 139:842–851. https://doi.org/10.1002/qj.1869

  • Brogniez H, Fallourd R, Mallet C, Sivira R, Dufour C (2016) Estimating confidence intervals around relative humidity profiles from satellite observations: application to the SAPHIR sounder. J Atmos Ocean Technol 33:1005–1022. https://doi.org/10.1175/JTECH-D-15-0237.1

  • Bronnenberg BJ, Dhar SK, Dubé J (2009) Brand history, geography, and the persistence of brand shares. J Polit Econ 117(1):87–115

    Google Scholar 

  • Capderou M (2009) Sampling. Comparison with other Meteorological Satellites. Tech. Rep, Mega Tropiques Technical Report, IPSL

    Google Scholar 

  • Chazette P, Marnas F, Totems J, Shang X (2014) Comparison of IASI water vapor retrieval with H2ORaman lidar in the framework of the Mediterranean HyMeX and ChArMEx programs. Atmos Chem Phys 14(18):9583–9596

    Google Scholar 

  • Craig GC, Mack JM (2013) A coarsening model for self-organization of tropical convection. J Geophys Res Atmos 118(16):8761–8769

    Google Scholar 

  • Derbyshire SH, Beau I, Bechtold P, Grandpeix JY, Piriou JM, Redelsperger JL, Soares PMM (2004) Sensitivity of moist convection to environmental humidity. QJR Meteorol Soc 130(604):3055–3079

    Google Scholar 

  • Emanuel KA (1986) An air-sea interaction theory for tropical cyclones. Part I: steady-state maintenance. J Atmos Sci 43(6):585–605

    Google Scholar 

  • Eymard L, Gheudin M, Laborie P, Sirou F, Gac CL, Vinson JP, Franquet S, Desbois M, Roca R, Scott N, Waldteufel P (2002) The SAPHIR humidity sounder. MEGHA-TROPIQUES 2nd Scientific Workshop, 2–6 July 2001, Paris, France

    Google Scholar 

  • Galewsky J, Steen-Larsen HC, Field RD, Worden J, Risi C, Schneider M (2016) Stable isotopes in atmospheric water vapor and applications to the hydrologic cycle. Rev Geophys 54(4):809–865

    Google Scholar 

  • González Y, Schneider M, Dyroff C, Rodríguez S, Christner E, García OE, Cuevas E, Bustos JJ, Ramos R, Guirado-Fuentes C, Barthlott S, Wiegele A, Sepúlveda E (2016) Detecting moisture transport pathways to the subtropical North Atlantic free troposphere using paired H2O-δD in situ measurements. Atmos Chem Phys 16(7):4251–4269

    Google Scholar 

  • Greenwald T, Christopher S (2002) Effect of cold clouds on satellite measurements near 183 GHz. J Geophys Res Atmos. https://doi.org/10.1029/2000JD000,258

  • Holloway CE, Neelin JD (2009) Moisture vertical structure, column water vapor, and tropical deep convection. J Atmos Sci 66(6):1665–1683

    Google Scholar 

  • Hong G, Heygster G, Miao J, Kunzi K (2005) Detection of tropical deep convective clouds from AMSU-B water vapor channels measurements. J Geophys Res Atmos. https://doi.org/10.1029/2004JD004,949

  • Johnson RH, Rickenbach M, Rutledge SA, Ciesielski PE, Schubert WH (1999) Trimodal characteristics of tropical convection. J Clim 12:2397–2418

    Google Scholar 

  • Kiemle C, Groß S, Wirth M, Bugliaro L (2017) Airborne lidar observations of water vapor variability in tropical shallow convective environment. Surv Geophys (in press)

    Google Scholar 

  • Kuang Z, Bretherton CS (2006) A mass-flux scheme view of a high-resolution simulation of a transition from shallow to deep cumulus convection. J Atmos Sci 63(7):1895–1909

    Google Scholar 

  • Lacour JL, Risi C, Clarisse L, Bony S, Hurtmans D, Clerbaux C, Coheur PF (2012) Mid-tropospheric δD observations from IASI/MetOp at high spatial and temporal resolution. Atmos Chem Phys 12(22):10,817–10,832

    Google Scholar 

  • Lacour JL, Clarisse L, Worden J, Schneider M, Barthlott S, Hase F, Risi C, Clerbaux C, Hurtmans D, Coheur PF (2015) Cross-validation of IASI/MetOp derived tropospheric δD with TES and groundbased FTIR observations. Atmos Meas Tech 8(3):1447–1466

    Google Scholar 

  • Lindzen RS, Nigam S (1987) On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J Atmos Sci 44(17):2418–2436

    Google Scholar 

  • Mapes BE, Zuidema P (1996) Radiative-dynamical consequences of dry tongues in the tropical troposphere. J Atmos Sci 53(4):620–638

    Google Scholar 

  • Möbis B, Stevens B (2012) Factors controlling the position of the Intertropical Convergence Zone on an aquaplanet. J Adv Model Earth Syst 4(4):1–16

    Google Scholar 

  • Muller CJ, Bony S (2015) What favors convective aggregation and why? Geophys Res Lett 42(13):5626–5634. https://doi.org/10.1002/2015GL064260

  • Naumann AK, Stevens B, Hohenegger C, Mellado JP (2017) A conceptual model of a shallow circulation induced by prescribed low-level radiative cooling. J Atmos Sci (in press)

    Google Scholar 

  • Nehrir AR, Kiemle C, Lebsock M, Kirchengast G, Buehler SA, Löhnert U, Liu CL, Hargrave P, Barrera-Verdejo M, Winker D (2017) Emerging technologies and synergies for airborne and space-based measurements of water vapor profiles. Surv Geophys (in press)

    Google Scholar 

  • Nishant N, Sherwood SC, Geoffroy O (2016) Radiative driving of shallow return flows from the ITCZ. J Adv Model Earth Syst 8(2):831–842

    Google Scholar 

  • Nuijens L, Stevens B, Siebesma AP (2009) The environment of precipitating shallow cumulus convection. J Atmos Sci 66(7):1962–1979

    Google Scholar 

  • Oueslati B, Bellon G (2013) Convective entrainment and large-scale organization of tropical precipitation: sensitivity of the CNRM-CM5 hierarchy of models. J Clim 26(9):2931–2946

    Google Scholar 

  • Raymond DJ, Raga GB, Bretherton CS, Molinari J, López-Carrillo C, Fuchs Ž (2003) Convective forcing in the intertropical convergence zone of the eastern Pacific. J Atmos Sci 60(17):2064–2082

    Google Scholar 

  • Risi C, Bony S, Fco Vimeux (2008) Influence of convective processes on the isotopic composition of precipitation and water vapor in the tropics: 2. Physical interpretation of the amount effect. J Geophys Res Atmos 113(D19):306

    Google Scholar 

  • Roca R, Brogniez H, Chambon P, Chomette O, Cloché S, Gosset ME, Mahfouf JF, Raberanto P, Viltard N (2015) The Megha-Tropiques mission: a review after three years in orbit. Front Earth Sci 3:852

    Google Scholar 

  • Schiro KA, Neelin JD, Adams DK, Lintner BR (2016) deep convection and column water vapor over tropical land versus tropical ocean: a comparison between the Amazon and the tropical western Pacific. J Atmos Sci 73(10):4043–4063

    Google Scholar 

  • Schneider M, Hase F (2011) Optimal estimation of tropospheric H2O and δD with IASI/METOP. Atmos Chem Phys 11(5):16,107–16,146

    Google Scholar 

  • Sherwood SC, Roca R, Weckwerth TM, Andronova NG (2010) Tropospheric water vapor, convection, and climate. Rev Geophys 48(2):1481

    Google Scholar 

  • Stevens B, Bony S (2013) Water in the atmosphere. Phys Today 66(6):29

    Google Scholar 

  • Stevens B, Farrell D, Hirsch L, Jansen F, Nuijens L, Serikov I, Brügmann B, Forde M, Linné H, Lonitz K, Prospero JM (2016) The Barbados cloud observatory: anchoring investigations of clouds and circulation on the edge of the ITCZ. Bull Am Meteorol Soc 97(5):787–801

    Google Scholar 

  • Thomas GE, Stamnes K (1999) Radiative transfer in the atmosphere and ocean. Cambridge atmospheric and space science series. Cambridge University Press, Cambridge

    Google Scholar 

  • Vial J, Bony S, Stevens B, Vogel R (2017) Mechanisms and model diversity of trade-wind shallow cumulus cloud feedbacks: a review. Surv Geophys. https://doi.org/10.1007/s10712-017-9418-2

  • Wirth M, Fix A, Mahnke P, Schwarzer H, Schrandt F, Ehret G (2009) The airborne multi-wavelength water vapor differential absorption lidar WALES: system design and performance. Appl Phys B 96(1):201–213

    Google Scholar 

  • Worden J, Noone D, Bowman K (2007) Importance of rain evaporation and continental convection in the tropical water cycle. Nature 445(7127):528–532

    Google Scholar 

  • Wu CM, Stevens B, Arakawa A (2009) What controls the transition from shallow to deep convection? J Atmos Sci 66(6):1793–1806

    Google Scholar 

Download references

Acknowledgements

Open access funding provided by Max Planck Society. This paper arises from the International Space Science Institute (ISSI) workshop on ‘‘Shallow clouds and water vapor, circulation and climate sensitivity’’. The NARVAL campaign was co-sponsored by the Max Planck Society, the Deutsche Forschungsgemeinschaft (German Science Foundation, project HALO-SPP 1294) and the DLR Institute of Atmospheric Physics. Jean-Lionel Lacour is grateful to the CNES for postdoctoral funding. P-E Kirstetter (NOAA NSSL) and C. Dufour (LATMOS) are acknowledged for their help on the SAPHIR data. The CNES and CNRS are gratefully acknowledged for the financial support to the scientific activity of the Megha-Tropiques mission. The ICARE group is also acknowledged for realizing the ground segment of the mission: The data are available at http://www.icare.univ-lille1.fr/mt. Brian E. Mapes and an anonymous reviewer are thanked for their constructive comments on an earlier version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bjorn Stevens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stevens, B., Brogniez, H., Kiemle, C., Lacour, JL., Crevoisier, C., Kiliani, J. (2017). Structure and Dynamical Influence of Water Vapor in the Lower Tropical Troposphere. In: Pincus, R., Winker, D., Bony, S., Stevens, B. (eds) Shallow Clouds, Water Vapor, Circulation, and Climate Sensitivity. Space Sciences Series of ISSI, vol 65. Springer, Cham. https://doi.org/10.1007/978-3-319-77273-8_10

Download citation

Publish with us

Policies and ethics