Skip to main content
Log in

Integration of the shallow water equations in a plane geometry using semi-Lagrangian and Eulerian schemes

  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Summary

Extended integrations of semi-Lagrangian and Eulerian shallow water primitive equation models are performed. The semi-Lagrangian model used the semi-implicit two-time-level scheme. The Eulerian model used a conserving nonlinear advection scheme.

For low resolution and longer integrations, difficulties were encountered with the semi-Lagrangian model which were absent in the Eulerian model. These difficulties are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arakawa, A., 1966: Computational design for long term numerical integration of the equations of fluid motion: Two-dimensional incompressible flow. Part I.J. Comput. Phys.,1, 119–143.

    Google Scholar 

  • Arakawa, A., Lamb, V. R., 1977: Computational design of the basic dynamical processes of the UCLA general circulation model. In: Chang, J. (ed.),General Circulation Models of the Atmosphere. (Methods in Comput. Phys., Vol.17) London: Academic Press, pp. 173–265.

    Google Scholar 

  • Arakawa, A., Lamb, V. R., 1981: A potential enstrophy and energy conserving scheme for the shallow water equations.Mon. Wea. Rev.,109, 18–36.

    Google Scholar 

  • Asselin, R., 1972: Frequency filter for time integrations.Mon. Wea. Rev.,100, 487–490.

    Google Scholar 

  • Bates, J. R., McDonald, A., 1982: Multiply-upstream, semi-Lagrangian advective schemes: Analysis and application to a multi-level primitive equation model.Mon. Wea. Rev.,110, 1831–1842.

    Google Scholar 

  • Bermejo, R., 1990: On the equivalence of semi-Lagrangian and particle-in-cell finite-element methods.Mon. Wea. Rev.,118, 979–987.

    Google Scholar 

  • Burridge, D. M., Hasseler, J., 1977: A model for medium range weather forcasting-adiabatic formulation. ECMWF Tech. Rept., No. 4, 46 pp.

  • Press, W. H., Flannery, B. P., Teukolsky, S. A., Vetterling, W. T., 1986:Numerical Recipes. Cambridge: Cambridge University Press, 818 pp.

    Google Scholar 

  • Gavrilov, M. B., 1985: Frequency of quasi-geostrophic modes over grid points and definition of geostrophic wind.Idöjárás,87, 77–85.

    Google Scholar 

  • Gavrilov, M. B., Janjić, Z. I., 1989: Computed rotational energy spectra of two energy and enstrophy conserving schemes on semi-staggered grids.Meteorol. Atmos. Phys.,41, 1–4.

    Google Scholar 

  • Grammeltvedt, A., 1969: A survey of finite difference schemes for primitive equations for a barotropic fluid.Mon. Wea. Rev.,97, 384–404.

    Google Scholar 

  • Haltiner, J. G., Williams, R. T., 1980:Numerical Prediction and Dynamic Meteorology, 2nd edn. New York: J. Wiley, 477 pp.

    Google Scholar 

  • Janjić, Z. I., 1977: Pressure gradient force and advection scheme used for forecasting with steep and small scale topography.Contrib. Atmos. Phys.,50, 186–199.

    Google Scholar 

  • Janjić, Z. I., 1984: Nonlinear advection schemes and energy cascade on semi-staggered grids.Mon. Wea. Rev.,112, 1234–1245.

    Google Scholar 

  • Janjić, Z. I., 1995: A note on the performance of the multiply-upstream semi-Lagrangian advection schemes for one-dimensional nonlinear momentum conservation equation.Meteorol. Atmos. Phys.,55, 1–16.

    Google Scholar 

  • McDonald, A., 1987: Accuracy of multiply-upstream semi-Lagrangian advective scheme II.Mon. Wea. Rev.,115, 1446–1450.

    Google Scholar 

  • McDonald, A., Bates, J. R., 1989: Semi-Lagrangian integration of a gridpoint shallow water model on the sphere.Mon. Wea. Rev.,117, 130–137.

    Google Scholar 

  • McDonald, A., 1991: Semi-Lagrangian methods. Meteorological Service, Tech. Note No. 53, 16 pp. [Available from: Meteorological Service, Glasnevin Hill, Dublin 9, Ireland].

  • Mesinger, F., 1981: Horizontal advection schemes of a staggered grid — an enstrophy and energy-conserving model.Mon. Wea. Rev.,109, 467–478.

    Google Scholar 

  • Mesinger, F., Janjić, Z. I., Ničković, S., Gavrilov, D., Deaven, D. G., 1988: The step-mountain coordinate: Model description and performance for case of Alpine lee cyclogenesis and for a case of Appalachian redevelopment.Mon. Wea. Rev.,116, 1493–1518.

    Google Scholar 

  • Pudykiewicz, J., Benoit, R., Staniforth, A., 1985: Preliminary results from a partial LRTAP model based on an existing meteorological forecast model.Atmos. Ocean,23, 267–303.

    Google Scholar 

  • Rančić, M., 1988: Fourth-order horizontal advection schemes on the semi-staggered grid.Mon. Wea. Rev.,116, 1274–1288.

    Google Scholar 

  • Robert, A. J., 1981: A stable numerical integration scheme for the primitive meteorological equations.Atmos. Ocean,19, 35–46.

    Google Scholar 

  • Robert, A. J., 1982: Semi-Lagrangian and semi-implicit numerical integration scheme for the primitive meteorological equations.J. Meteor. Soc. Japan. 60, 319–324.

    Google Scholar 

  • Staniforth, A. N., Mitchell, H. L., 1977: A semi-implicit finite-element barotropic model.Mon. Wea. Rev.,105, 154–169.

    Google Scholar 

  • Staniforth, A. N., Côté, J., 1091: Semi-Lagrangian integration schemes for atmospheric model — a review.Mon. Wea. Rev.,119, 2206–2223.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 14 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gavrilov, M.B. Integration of the shallow water equations in a plane geometry using semi-Lagrangian and Eulerian schemes. Meteorl. Atmos. Phys. 62, 141–160 (1997). https://doi.org/10.1007/BF01029699

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01029699

Keywords

Navigation