Skip to main content
Log in

Plasmid stability ofBacillus thuringiensis var.kurstaki (HD-1) during continuous phased cultivation

  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Summary

Bacillus thuringiensis var.kurstaki (HD-1)_was grown as a continuous phased culture in a cyclone fermentor. During the time course of the continuous phased cultivation (CPC), the culture was sampled to determine the efficiency of sporulation and parasporal crystal formation. Concurrently, plasmid DNA was extracted and resolved on agarose gels. The plasmid profile remained constant throughout 328 h of cultivation. However, during the same time period, asporogenous, acrystalliferous variants increased from<1% to>90% of the cells harvested. Our data suggests that the disappearance of parasporal crystals inB. thuringiensis var.kurstaki (HD-1) during CPC occurs independent of plasmid copy but may be due to defective sporulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Birnboim, H.C., and Doly, J.C. (1979). A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucl. Acids. Res. 7, 1513–1523.

    Google Scholar 

  • Blokhina, T.P., Sakharova, Z.V., Ignatenko, Yu. N., Rabotnava, I.L., and Rautenshtein, Ya.I. (1984). Variability inBacillus thuringiensis under various growth conditions. Microbiol. 53:340–344 Translation of Mikrobiologiya 53, 427–431.

    Google Scholar 

  • Boudreaux, D.P., and Srinivasan, V.R. (1981). A continuous culture study of growth ofBacillus cereus T. J. Gen. Microbiol. 122, 129–135.

    Google Scholar 

  • Couch, T.L., and Ross, D.A. (1980). Production and utilization ofBacillus thuringiensis Biotechnol. and Bioeng. 22, 1297–1304.

    Google Scholar 

  • Dawson, P.S.S. (1965). Continuous phased growth, with a modified chemostat. Can J.Microbiol. 11, 893–903.

    Google Scholar 

  • Godwin, D., and Slater, J.H. (1979). The influence of the growth environment on the stability of a drug resistance plasmid inE. coli K12. J. Gen. Microbiol. 111, 201–210.

    Google Scholar 

  • Gonzalez, J.M., Jr., Dulmage, H. T., and Carlton, B.C. (1981). Correlation between specific plasmids and delta-endotoxin production inBacillus thuringiensis. Plasmid 5, 351–365.

    Google Scholar 

  • Held, G.A., Bulla, L.A. Jr., Farrari, E., Hoch, J., Aronson, A.I., and Minnich, S.A. (1982). Cloning and localization of the lepidopteran protoxin gene ofBacillus thuringiensis subsp.kurstaki. Proc. Natl. Acad. Sci. USA 79, 6065–6069.

    Google Scholar 

  • Imanaka, T., Tsunekawa, H., and Aiba, S. (1980). Phenotypic stability oftrp operon recombinants plasmids inEscherichia coli. J. Gen. Microbiol. 118, 253–261.

    Google Scholar 

  • Kamdar, H., and Jayaraman, K. (1983). Spontaneous loss of a high molecular weight plasmid and the biocide ofBacillus thuringiensis var.israeliensis. Biochem. Biophys. Res. Comm. 110, 477–482.

    Google Scholar 

  • Khachatourians, G.G. (1986). Production and use of biological pest control agents. Trends in Biotechnol. 4, 120–124.

    Google Scholar 

  • Kronstad, J.W., Schnepf, H.E., and Whiteley, H.R. (1983). Diversity of locations forBacillus thuringiensis crystal protein genes. J. Bacteriol. 154, 419–428.

    Google Scholar 

  • Lereclus, D., Lecadet, M., Ribier, J., and Dedonder, R. (1982). Molecular relationships among plasmids ofBacillus thuringiensis; Conserved sequences through 11 crystalliferous strains. Mol. Gen. Genet. 186, 391–398.

    Google Scholar 

  • Melling, J., Ellwood, D.C., and Robinson, A. (1977). Survival of R-factor carryingEscherichia coli in mixed cultures in the chemostat. FEMS Microbiol. Lett. 2, 87–89

    Google Scholar 

  • Miwa, K., Nakamori, S., Sano, K. and Momose, H. (1984). Stability of recombinant plasmids carrying the threonine operon inEscherichia coli. Agric. Biol. Chem. 48, 2233–2237.

    Google Scholar 

  • Nickerson, L.W., and Bulla, L. A., Jr., (1974). Physiology of sporeforming bacteria associated with insects: Minimal nutritional requirements for growth, sporulation and parasporal crystal formation ofBacillus thuringiensis. Appl. Microbiol. 28, 124–128.

    Google Scholar 

  • Nilsson, J., and Skogman, S.G. (1986). Stabilization ofEscherichia coli tryptophan production vectors in continuous cultures: A comparison of three different systems. Bio/Technol. 4, 901–903.

    Google Scholar 

  • Noack, D., Roth, M. Geuther, R., Muller, G. Undisz, K., Hoffmeier, C., and Gaspar, S. (1981). Maintenance and genetic stability of vector plasmids pBR322 and pBR325 inEscherichia coli K12 strains grown in a chemostat. Mol. Gen Genet. 184, 121–124.

    Google Scholar 

  • Nugent, M.E., Primrose, S.B., and Tacon, W.C.A. (1983) The stability of recombinant DNA. in: Developments in Industrial Microbiology. C.H. Nash and L.A. Underkofler eds. vol. 24, pp. 271–285, Arlington, Virginia: Society for Industrial Microbiology.

    Google Scholar 

  • Rood, J.I., Sneddon, M.K., and Morrison, J.F. (1980) Instability intyr R strains of plasmids carrying the tyrosine operon: Isolation and characterization of plasmid derivatives with insertions or deletions. J. Bacteriol. 144, 552–559.

    Google Scholar 

  • Rosteck, P.R., Jr., and Hershberger, C.L. (1983). Selective retention of recombinant plasmids coding for human insulin. Gene 25, 29–38.

    Google Scholar 

  • Schnepf, H.E., and Whiteley, H.R. (1981). Cloning and expression of theBacillus thuringiensis crystal protein gene inEscherichia coli. Proc. Natl. Acad. Sci. USA 78, 2893–2897.

    Google Scholar 

  • Selinger, L.B., Dawson, P.S.S, and Khachatourians, G.G. (1987) Behavior ofBacillus thuringiensis var.kurstaki under batch and continuous phased cultivation in a cyclone fermentor. Submitted to Appl. Microbiol. Biotechnol.

  • Skogman, L.G., Nilsson, J., and Gustafsson, P. (1983). The use of a partition locus to increase stability of tryptophan-operon-bearing plasmids inEscherichia coli. Gene 23, 105–115.

    Google Scholar 

  • Summers, D. K., and Sherratt, D.J. (1984). Multimerization of high copy number plasmids causes instability: Col E1 encodes a determinant essential for plasmid monomerization and stability. Cell 36, 1097–1103.

    Google Scholar 

  • Tsunekawa, H., Tateishi, M., Imanaka, T., and Aiba, S. (1981). TnA-directed deletion of thetrp operon from RSF2124-trp inEscherichia coli. J. Gen. Microbiol. 127, 93–102.

    Google Scholar 

  • Wouters, J.T.M., and van Andel, J.G. (1983). Persistance of the R6 plasmid inEscherichia coli grown in chemostat cultures. FEMS Microbiol. Lett. 16, 169–174.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roy, B.P., Selinger, L.B. & Khachatourians, G.G. Plasmid stability ofBacillus thuringiensis var.kurstaki (HD-1) during continuous phased cultivation. Biotechnol Lett 9, 483–488 (1987). https://doi.org/10.1007/BF01027457

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01027457

Keywords

Navigation