Skip to main content
Log in

A parallel multigrid algorithm for percolation clusters

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A new parallel cluster-finding algorithm is formulated by using multigrid relaxation methods very similar to those used for differential equation solvers. For percolation clusters, this approach drastically reduces critical slowing down relative to local or scan relaxation methods. Numerical studies of scaling properties with system size are presented in the case of the 2D percolation clusters of the Swendsen-Wang Ising dynamics running on the Connection Machine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Stauffer,Introduction to Percolation Theory (Taylor and Francis, London, 1984).

    Google Scholar 

  2. R. Swendsen and J. S. Wang,Phys. Rev. Lett. 58:86 (1987).

    Google Scholar 

  3. W. Klein, T. Ray, and P. Tamayo,Phys. Rev. Lett. 62:163 (1989).

    Google Scholar 

  4. P. Tamayo, R. C. Brower, and W. Klein,J. Stat. Phys. 58:1083 (1990).

    Google Scholar 

  5. R. G. Edwards and A. D. Sokal,Phys. Rev. D 38:2009 (1988); A. Sokal, Monte Carlo methods in statistical mechanics: Foundations and new algorithms, lecture notes.

    Google Scholar 

  6. C. M. Fortuin and P. W. Kasteleyn,Physica 57:536 (1972); P. W. Kasteleyn and C. M. Fortuin,J. Phys. Soc. Japan Suppl. 26s:11 (1969).

    Google Scholar 

  7. A. Coniglio and W. Klein,J. Phys. A 13:2775 (1980).

    Google Scholar 

  8. J. Hoshen and R. Kopelman,Phys. Rev. B 14:3438 (1976).

    Google Scholar 

  9. R. M. Karp, The transitive closure of a random digraph,TR-89-047, August 1989, International Computer Science Institute, Berkeley, California.

    Google Scholar 

  10. J. Woo and S. Sahni, Hypercube computing: Connected components,J. Supercomputing 3:209–234 (1989).

    Google Scholar 

  11. A. N. Burkitt and D. W. Heermann,Comp. Phys. Comm. 54:201 (1989).

    Google Scholar 

  12. A. Hansen and S. Roux,J. Phys. A 20:L873 (1987).

    Google Scholar 

  13. A. Stoll,J. Phys. Cond. Matter 1:6959 (1989).

    Google Scholar 

  14. D. Kandel, E. Domany, D. Ron, A. Brandt, and E. Loh, Jr.,Phys. Rev. Lett. 60:1591 (1988).

    Google Scholar 

  15. H. J. Herrmann and H. E. Stanley,J. Phys. A 21:L829 (1988).

    Google Scholar 

  16. N. Ito, M. Taiji, and M. Suzuki,J. Phys. (Paris)49:C8–1397 (1988).

    Google Scholar 

  17. W. Press, B. Flannery, S. Teukolsky, and W. Vetterling,Numerical Recipes (Cambridge University Press, 1988).

  18. H. D. Simon, ed.,Scientific Applications of the Connection Machine, (World Scientific, Singapore, 1989).

    Google Scholar 

  19. P. C. Hohenberg and B. Halperin,Rev. Mod. Phys. 49:435 (1977).

    Google Scholar 

  20. J. S. Wang, Private communication.

  21. T. H. Cormen, C. E. Leiserson, and R. L. Rivest,Introduction to Algorithms (MIT Press, 1990); D. Knuth,The Art of Computer Programming, Vol. 3 (Addison-Wesley, 1973).

  22. R. Brower and P. Tamayo,Phys. Rev. Lett. 62:1087 (1989).

    Google Scholar 

  23. U. Wolff,Phys. Rev. Lett. 60:1461 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brower, R.C., Tamayo, P. & York, B. A parallel multigrid algorithm for percolation clusters. J Stat Phys 63, 73–88 (1991). https://doi.org/10.1007/BF01026593

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01026593

Key words

Navigation