Skip to main content
Log in

Comparisons of creatine kinase primary structures

  • Published:
Journal of Protein Chemistry Aims and scope Submit manuscript

Abstract

Comparisons of nine creatine kinase sequences show that 67% of the protein sequence is identical among rabbit, rat, mouse, and chicken muscle, rabbit, rat, and chicken brain, and electric organ sequences from two species of electric ray(Torpedo). The extensive homology precludes a facile prediction of active-site residues based on sequence conservation. The sequences are more similar within isozyme types than are the different isozymes from any one species. There are 35 positions in the muscle and brain sequence pairs for three species which differentiate the two forms. TheTorpedo sequences do not fall completely into either of these patterns. Except for homology with partial sequences of other ATP-guanidino phosphotransferases, no significant homology with other protein or nucleic acid sequences in available databases was found. Preliminary secondary structural predictions suggest that the C-terminal half of the protein is likely an α/β-type protein. Placement in the sequence of two peptides found in previous cross-linking studies reveals two stretches of primary structure that are presumably close in space to the reactive Cys-283 and hence close to the active site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abarbanel, R. M. (1985). Ph.D. Thesis, University of California, San Francisco, California.

    Google Scholar 

  • Barker, W. C., Hunt, L. T., Orcutt, B. C., George, D. G., Yeh, L. S., Chem, H. R., Blomquist, M. C., Johnson, G. C., Seibel-Ross, E. I., and Ledley, R. S. (1984a). Protein Identification Resource of the NIH, National Biomedical Research Foundation, Georgetown University Medical Center, Washington, D.C.

    Google Scholar 

  • Barker, W. C., Chen, H. R., Hunt, L. T., Orcutt, G. C., Seibel-Ross, E. I., and Dayhoff, M. O. (1984b). Nucleic Acid Sequence Database, Version 22, National Biomedical Research Foundation, Georgetown University Medical Center, Washington, D.C.

    Google Scholar 

  • Barrantes, F. J., Mieskes, G., and Walliman, T. (1983).FEBS Lett. 152, 270–276.

    Article  CAS  PubMed  Google Scholar 

  • Benfield, P. A., Ziven, R. A., Miller, L. S., Sowder, R., Smythers, G. W., Henderson, L., Oroszlan, S., and Pearson, M. L. (1984).J. Biol. Chem. 259, 14979–14984.

    Article  CAS  PubMed  Google Scholar 

  • Benfield, P. A., Henderson, L., and Pearson, M. L. (1985).Gene 39, 263–267.

    Article  CAS  PubMed  Google Scholar 

  • Buskin, J. N., Jaynes, J. B., Chamberlain, J. S., and Hauschka, S. D. (1985).J. Mol. Evol.,22, 334–341.

    Article  CAS  PubMed  Google Scholar 

  • Caravatti, M., Perriard, J. C., and Eppenberger, H. M. (1979).J. Biol. Chem. 254, 1388–1394.

    Article  CAS  PubMed  Google Scholar 

  • Cohen, F. E., Abarbanel, R. M., Kuntz, I. D., and Fletterick, R. J. (1983).Biochemistry 22, 4894–4904.

    Article  CAS  PubMed  Google Scholar 

  • Cohen, F. E., Abarbanel, R. M., Kuntz, I. D. and Fletterick, R. J. (1986).Biochemistry,25, 266–275.

    Article  CAS  PubMed  Google Scholar 

  • Cohn, M., and Reuben, J. (1971).Acc. Chem. Res. 4, 214–219.

    Article  CAS  Google Scholar 

  • Dawson, D. M., Eppenberger, H. M., and Kaplan, N. O. (1967).J. Biol. Chem. 242, 210–217.

    Article  CAS  PubMed  Google Scholar 

  • DeLuca, M., Hall, N., Rice, R., and Kaplan, N. D. (1981).Biochem., Biophys. Res. Comm. 99, 189–195.

    Article  CAS  PubMed  Google Scholar 

  • DerTerrosian, E., Pradel, L. A., Kassab, R., and van Thoai, N. (1969).Eur. J. Biochem. 11, 482–490.

    Article  Google Scholar 

  • DerTerrosian, E., Desvages, G., Pradel, L. A., Kassab, R., and van Thoai, N. (1971).Eur. J. Biochem. 22, 585–592.

    Article  Google Scholar 

  • Dickerson, R. E. (1971).J. Mol. Evol. 1, 26–45.

    Article  CAS  PubMed  Google Scholar 

  • Doolittle, R. F. (1981).Science 214, 149–159.

    Article  CAS  PubMed  Google Scholar 

  • Doolittle, R. F. (1983).Newat83, Department of Chemistry, University of California, San Diego, California.

    Google Scholar 

  • Eppenberger, H. M., Dawson, D. M., and Kaplan, N. D. (1967).J. Biol. Chem. 242, 204–209.

    Article  CAS  PubMed  Google Scholar 

  • Eppenberger, H. M., Perriard, J.-C., and Walliman, T., 1983, InIsozymes: Current Topics in Biological and Medical Research, Vol. 7 (Rattozzi, M., Scandilios, J. C., and Whitt, G. S., eds.), Alan R. Liss, New York, pp. 19–38.

    Google Scholar 

  • Fisher, M. L., Carliner, N. H., Becker, L. C., Peters, R. W., and Plotnick, G. D. (1983).J. Am. Med. Assoc. 249, 393–394.

    Article  CAS  Google Scholar 

  • GenBank (1984). Release 23.0, European Molecular Biology Laboratory.

  • Giraudat, J., Devillers-Thiery, A., Perriard, J.-C., and Changeux, J.-P. (1984).Proc. Natl. Acad. Sci. USA 81, 7313–7317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gysin, R., and Flanagan, S. D. (1985).Fed. Proc. 44, 2817.

    Google Scholar 

  • Kenyon, G. L., and Reed, G. H. (1983).Adv. Enzymol. 54, 367–426.

    CAS  PubMed  Google Scholar 

  • Knell, J. D., Perryman, M. B., Bohlmeyer, T. J., and Roberts, R. (1985).Fed. Proc. 44, 1464.

    Google Scholar 

  • Kwiatkowski, R. W., Schweinfest, C. W., and Dottin, R. P. (1984).Nucleic Acids Res. 12, 6925–6934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lipman, D. J., and Pearson, W. R. (1985a).Science 22, 1435–1441.

    Article  Google Scholar 

  • Lipman, D. J., and Pearson, W. R. (1985b).Proc. Natl. Acad. Sci. USA 80, 726–730.

    Google Scholar 

  • Mahowald, T. A. (1969).Fed. Proc. 28, 601.

    Google Scholar 

  • Martinez, H. M., and Sobel, E. (1985).Nucleic Acids Res., in press.

  • Martinez, H. M., Katzung, B., and Farrah, T. (1983).Sequence Analysis Program Manual, Biomathematics Computation Laboratory, University of California, San Francisco.

    Google Scholar 

  • Orcutt, B. C., Dayhoff, M. O., and Barker, W. C. (1984). Protein Identification Resource, National Biomedical Research Foundation, Georgetown University Medical Center, Washington, D.C.

    Google Scholar 

  • Ordahl, C. P., Evans, G. L., Cooper, T. A., Kunz, G., and Perriard, J.-C. (1984).J. Biol. Chem. 259, 15224–15227.

    Article  CAS  PubMed  Google Scholar 

  • Perriard, J.-C. (1979).J. Biol. Chem. 254, 7036–7041.

    Article  CAS  PubMed  Google Scholar 

  • Perriard, J.-C., Achtnich, U., Cerny, L. C., Eppenberger, H. M., Grove, B. K., Hossle, J. P., and Schäfer, B. (1985). InMolecular Biology of Muscle Development (Emerson, C., Fischman, D. A., Nadal-Ginand, B., and Siddigin, M. A. Q., eds.), Alan R. Liss, New York, in press.

    Google Scholar 

  • Perryman, M. B., Knell, J. D., Ifegwu, J., and Roberts, R. (1985).J. Biol. Chem. 260, 9399–9404.

    Article  CAS  PubMed  Google Scholar 

  • Pickering, L., Pang, H., Biemann, K., Monro, H., and Schimmel, P. (1985).Proc. Natl. Acad. Sci. USA 82, 2310–2314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Putney, S., Herlihy, W., Royal, N., Pang, H. Y., Aposhian, H. V., Pickering, L., Belagage, R., Biemann, K., Page, D., Kuby, S., and Schimmel, P. (1984).J. Biol. Chem. 259, 14317–14320.

    Article  CAS  PubMed  Google Scholar 

  • Regnouf, F., Kassals, R., Debuire, B., Richard, C., and Han, K. K. (1981).Int. J. Peptide Protein Res. 17, 143–155.

    Article  CAS  Google Scholar 

  • Reiss, N. A., and Kaye, A. M. (1980).J. Biol. Chem. 256, 5741–5749.

    Article  Google Scholar 

  • Richardson, J. S. (1981).Adv. Protein Chem. 34, 167–355.

    Article  CAS  PubMed  Google Scholar 

  • Roman, D. G., Billadello, J. J., Gordon, J. I., Sobel, B. E., and Strauss, A. W. (1985).Clin. Res. 33, 222A.

    Google Scholar 

  • Rosenberg, U. B., Kunz, G., Frischauf, A., Lehrach, H., Mahr, R., Eppenberger, H. M., and Perriard, J.-C. (1982).Proc. Natl. Acad. Sci. USA 79, 6589–6592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walliman, T., and Eppenberger, H. M. (1985). InCell and Muscle Motility, Vol. 6 (J. W. Shay, ed.), Plenum Press, New York, pp. 239–285.

    Chapter  Google Scholar 

  • Walliman, T., Walzthony, D., Wegmann, G., Moser, H., Eppenberger, H. M., and Barrantes, F. J. (1985).J. Cell Biol. 100, 1063–1072.

    Article  Google Scholar 

  • Watts, D. C. (1973). InThe Enzymes, Vol. 8, Part A (Boyer, P. D., ed.), Academic Press, New York, pp. 383–455.

    Google Scholar 

  • West, B. L., Babbitt, P. C., Mendez, B., and Baxter, J. D. (1984).Proc. Natl. Acad. Sci. USA 81, 7007–7012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babbitt, P.C., Kenyon, G.L., Kuntz, I.D. et al. Comparisons of creatine kinase primary structures. J Protein Chem 5, 1–14 (1986). https://doi.org/10.1007/BF01025580

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01025580

Key words

Navigation