Skip to main content
Log in

Effects of amino acid substitutions outside an antigenic site on protein binding to monoclonal antibodies of predetermined specificity obtained by peptide immunization: Demonstration with region 145–151 (antigenic site 5) of myoglobin

  • Published:
Journal of Protein Chemistry Aims and scope Submit manuscript

Abstract

Monoclonal antibodies of predetermined specificity were prepared by immunization with a free (i.e., without coupling to any protein carrier) synthetic peptide representing region 145–151 of sperm whale myoglobin (SpMb) and their cross-reactions with eight Mb variants were determined. Five Mbs—bottle-nose dolphin myoglobin (BdMb), pacific common dolphin myoglobin (PdMb), horse myoglobin (HsMb), dog myoglobin (DgMb), and badger myoglobin (BgMb)—have an identical sequence in that region. Nevertheless, these Mbs exhibited very different cross-reactivities. BdMb and PdMb exhibited cross-activities which were comparable to that of the reference antigen, SpMb; while the reactivity of HsMb was remarkedly decreased, DgMb and BgMb showed almost no cross-reactions with these mAbs. Since the region 145–151 has an identical sequence in all the five Mbs, it is concluded that the differences in their antigenic reactivities with anti-region 145–151 mAbs are due to the effects of amino acid substitutions outside the region 145–151. Another pair of myoglobins, echidna myoglobin (EdMb) and chicken myoglobin (ChMb), have the same sequence in that region, but reacted very differently with anti-region 145–151 mAbs. The reactivity and affinity of EdMb were substantially decreased while those of ChMb were almost completely absent, relative to SpMb. It is concluded, contrary to popular assumptions, that when an amino acid substitution influences the binding of a protein variant to a mAb, it is not necessary for that substitution to be an actual contact residue (i.e., a residue within the antigenic site where the mAb binds). Such effects, which are often very drastic, could be due to indirect influences of the substitution on the chemical and binding properties of the site residues. Furthermore, residues which had been postulated, on the basis of these assumptions, to constitute discontinuous antigenic sites in SpMb, were found [from the present studies and those recently reported with mAbs against the other four antigenic site of Mb (regions 15–22, 56–62, 94–100, and 113–120 of SpMb)] to merely be exerting indirect effects on the known five antigenic sites of Mb. The effects of substitutions, which can happen even in the absence of conformational changes, are determined by many factors, such as the chemical nature of the substitution, its environment, its distance from the site, and the nature of the site residue(s) being affected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abaza, M.-S. I., and Atassi, M. Z. (1992a).J. Prot. Chem. 11, 455–465.

    CAS  Google Scholar 

  • Abaza, M.-S. I., and Atassi, M. Z. (1992b).J. Prot. Chem. 11, 433–444.

    CAS  Google Scholar 

  • Abaza, M.-S. I., and Atassi, M. Z. (1992c).J. Prot. Chem. 11, 685–694.

    Google Scholar 

  • Abaza. M.-S. I., Young, C. R., and Atassi, M. Z. (1992).J. Prot. Chem. 11, 445–454.

    CAS  Google Scholar 

  • Atassi, M. Z. (1975).Immunochemistry 12, 423–438.

    CAS  PubMed  Google Scholar 

  • Atassi, M. Z. (1978).Immunochemistry 15, 909–936.

    CAS  PubMed  Google Scholar 

  • Atassi, M. Z. (1980).Mol. Cell. Biochem. 32, 21–43.

    CAS  PubMed  Google Scholar 

  • Atassi, M. Z. (1984).Eur. J. Biochem. 145, 1–20.

    CAS  PubMed  Google Scholar 

  • Atassi, M. Z., and Kazim, A. L. (1978).Adv. Exptl. Med. Biol. 98, 19–40.

    CAS  Google Scholar 

  • Atassi, M. Z., and Kazim, A. L. (1980).Biochem. J. 187, 163–172.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Benjamin, D. C., Berzofsky, J. A., East, I. J., Gurd, F. R. N., Hannum, C., Leach, S. J., Margoliash, E., Michael, J. G., Miller, S. J., Todd, P. E., and Wilson, A. C. (1984).Annu. Rev. Immunol. 2, 67–101.

    CAS  PubMed  Google Scholar 

  • Berzofsky, J. A. (1985).Science 229, 932–939.

    CAS  PubMed  Google Scholar 

  • Berzofsky, J. A. (1991).FASEB J. 5, 2412–2418.

    CAS  PubMed  Google Scholar 

  • Berzofsky, J. A., and Berkower, I. (1989). InFundamental Immunology, 2nd ed. (Paul, W. E., ed.), Raven Press, New York, pp. 169–207.

    Google Scholar 

  • Berzofsky, J. A., Hicks, G., Fedorko, J., and Minna, J. (1980).J. Biol. Chem. 255, 11,188–11,191.

    CAS  Google Scholar 

  • Berzofsky, J. A., Buckenmeyer, G. K., Hicks, G., Gurd, F. R. N., Feldmann, R. J., and Minna, J. (1982).J. Biol. Chem. 257, 3189–3198.

    CAS  PubMed  Google Scholar 

  • Berzofsky, J. A., Buckenmeyer, G. K., Hicks, G., Killion, D. J., Berkower, I., Kohno, Y., Flanagan, M. A., Busch, M. R., Feldman, R. J., Minna, J., and Gurd, F. R. N. (1983). InProtein Conformation as Immunological Signal (Celada, F., Shumker, V., and Sercarz, E. E., eds.), Plenum Press, New York, pp. 165–180.

    Google Scholar 

  • Castillo, O., Jones, L. T., and Lehmann, H. (1978).Biochim. Biophys. Acta 533, 289–292.

    CAS  PubMed  Google Scholar 

  • Dautrevaux, M., Boulanger, Y., Han, K.-K., and Biserte, G. (1969).Eur. J. Biochem. 11, 267–277.

    CAS  PubMed  Google Scholar 

  • David, C. S., and Atassi, M. Z. (1982).Adv. Exptl. Med. Biol. 150, 97–125.

    CAS  Google Scholar 

  • Deconinck, M., Peiffers, S., Depretter, J. P., Paul, C., Schnek, A. G., and Leonis, J. (1975).Biochim. Biophys. Acta 386, 567–575.

    CAS  PubMed  Google Scholar 

  • DeLisi, C., and Berzofsky, J. (1985).Proc. Natl. Acad. Sci. USA 82, 7048–7052.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dumur, V., Dautrevaux, M., and Han, K.-K. (1976).Biochim. Biophys. Acta 420, 376–386.

    CAS  PubMed  Google Scholar 

  • East, I. J., Todd, P. E., and Leach, S. J. (1980).Mol. Immunol. 17, 519–525.

    CAS  PubMed  Google Scholar 

  • East, I. J., Hurrell, J. G. R., Todd, P. E. E., and Leach, S. J. (1982).J. Biol. Chem. 257, 3199–3202.

    CAS  PubMed  Google Scholar 

  • Edmundson, A. B. (1965).Nature (London) 205, 883–887.

    CAS  Google Scholar 

  • Jones, L. T., Castillo, O., and Lehmann, H. (1978).Biochim. Biophys. Acta 493, 460–464.

    Google Scholar 

  • Kazim, A. L., and Atassi, M. Z. (1977).Biochem. J. 167, 275–278.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kazim, A. L., and Atassi, M. Z. (1980a).Biochem. J. 191, 261–264.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kazim, A. L., and Atassi, M. Z. (1980b).Biochem. J. 191, 673–680.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kazim, A. L., and Atassi, M. Z. (1982).Biochem. J. 203, 201–208.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koketsu, J., and Atassi, M. Z. (1973).Biochim. Biophys. Acta 328, 289–302.

    CAS  PubMed  Google Scholar 

  • Okuda, K., Sakata, S., Atassi, M. Z., and David, C. S. (1979).J. Immunogen. 6, 447–452.

    CAS  Google Scholar 

  • Romero-Herrera, A. E., and Lehmann, H. (1974).Biochim. Biophys. Acta 336, 318–323.

    CAS  Google Scholar 

  • Sack, J. (1988).J. Mol. Graphics 6, 224–225.

    Google Scholar 

  • Schmitz, H. E., Atassi, H., and Atassi, M. Z. (1982).Mol. Immunol. 19, 1699–1702.

    CAS  PubMed  Google Scholar 

  • Schmitz, H. E., Atassi, H., and Atassi, M. Z. (1983a).Immunol. Commun. 12, 161–175.

    CAS  PubMed  Google Scholar 

  • Schmitz, H. E., Atassi, H., and Atassi, M. Z. (1983a).Immunol. Commun. 12, 161–175.

    CAS  PubMed  Google Scholar 

  • Schmitz, H. E., Atassi, H., and Atassi, M. Z. (1983b).Mol. Immunol. 20, 719–726.

    CAS  PubMed  Google Scholar 

  • Spouge, J. L., Guy, H. R., Cornett, J. L., Margolitt, H., Cease, K., Berzofsky, J., and DeLisi, C. (1987).J. Immunol. 138, 204–212.

    CAS  PubMed  Google Scholar 

  • Takano, T. (1984).Methods and Applications in Crystallographic Computing (Hall, S. R., and Ashida, T., eds.), Clarendon Press, Oxford, pp. 262–272.

    Google Scholar 

  • Tetaert, D., Han, K.-K., Plancot, M.-T., Daurevaux, M., Ducastaing, S., Hombrados, I., and Neuzil, E. (1974).Bochim. Biophys. Acta 351, 371–324.

    Google Scholar 

  • Todd, P. E., East, I. J., and Leach, S. J. (1982).Trends Biochem. Sci. 7, 212–216.

    CAS  Google Scholar 

  • Underwood, P. A. (1982).J. Gen. Virol. 62, 153–169.

    CAS  PubMed  Google Scholar 

  • van Regenmortel, M. H. V. (1988). InLaboratory Techniques in Biochemistry and Molecular Biology (Burdon, R. H., and van Knippenberg, P. H., eds.), Vol. 19, Elsevier Science Publishers, B.V. (Biomedical Division), pp. 1–39.

  • Wang, C.-C., Avila, R., Jones, B. N., and Gurd, F. R. N. (1977).Biochemistry 16, 4978–4981.

    CAS  PubMed  Google Scholar 

  • Watson, H. C. (1969). InProgress in Sterochemistry (Aylette, B. J., and Harris, M., eds.), Butterworth, London, pp. 299–333.

    Google Scholar 

  • Young, C. R., and Atassi, M. Z. (1982).Immunol. Commun. 11, 9–16.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abaza, MS.I., Atassi, M.Z. Effects of amino acid substitutions outside an antigenic site on protein binding to monoclonal antibodies of predetermined specificity obtained by peptide immunization: Demonstration with region 145–151 (antigenic site 5) of myoglobin. J Protein Chem 11, 687–698 (1992). https://doi.org/10.1007/BF01024970

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01024970

Key words

Navigation