Advertisement

Journal of Applied Electrochemistry

, Volume 17, Issue 6, pp 1118–1128 | Cite as

Mass transfer downstream of nozzles in turbulent pipe flow with varying Schmidt number

  • S. M. Chouikhi
  • M. A. Patrick
  • A. A. Wragg
Papers

Abstract

Local mass transfer rates at the wall of a pipe downstream of constricting nozzles have been measured using the electrochemical limiting diffusion current technique for different electrolyte Schmidt numbers. The familiar peaked axial distribution of mass transfer downstream of the nozzle was verified and the peak mass transfer values were found to agree well with the data of Tagget al. [1]. An overall correlation of the data in terms of both Reynolds number and nozzle expansion ratio produced the equation
$$({{Sh_{2P} } \mathord{\left/ {\vphantom {{Sh_{2P} } {Sh_{2FD} }}} \right. \kern-\nulldelimiterspace} {Sh_{2FD} }})({{D_1 } \mathord{\left/ {\vphantom {{D_1 } {D_2 }}} \right. \kern-\nulldelimiterspace} {D_2 }})^{ - 0.7} = 14.39Re_2^{ - 0.182} $$
Limiting current-time traces produced evidence of the highly turbulent flow in the recirculation zone near the position of peak mass transfer.

Keywords

Physical Chemistry Mass Transfer Reynolds Number Transfer Rate Peaked 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Nomenclature

A

electrode surface area

D

diameter

D

diffusion coefficient

C

bulk concentration of Fe(CN) 6 3-

F

Faraday number

IL

limiting current

k

mass transfer coefficient

u

liquid velocity

x

distance downstream of nozzle

Greek symbols

μ

dynamic viscosity

ϱ

density

Dimensionless groups

Re

Reynolds number,Duϱ/μ

Sc

Schmidt number,μD

Sh

Sherwood number,kD/D

Subscripts

1

nozzle

2

downstream pipe

FD

fully developed

P

peak (maximum) value

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. J. Tagg, M. A. Patrick and A. A. Wragg,Trans. Instn. Chem. Engrs 57 (1979) 176.Google Scholar
  2. [2]
    K. M. Krall and E. M. Sparrow,J. Heat Transfer 88 (1966) 131.Google Scholar
  3. [3]
    S. M. Chouikhi, PhD Thesis, University of Exeter (1985).Google Scholar
  4. [4]
    S. M. Chouikhi, M. A. Patrick and A. A. Wragg, Proc. Int. Conf. Physical Modelling of Multiphase Flow, Coventry, UK, (April 1983), p. 53ff.Google Scholar
  5. [5]
    Idem, S. M. Chouikhi, M. A. Patrick and A. A. Wragg., Proc. 3rd Int. Conf. Multi-phase Flow, The Hague, Netherlands, May 1987.Google Scholar
  6. [6]
    A. K. Runchal,Int. J. Heat Mass Transfer 14 (1971) 781.Google Scholar
  7. [7]
    T. Sydberger and U. Lotz,J. Electrochem. Soc. 129 (1982) 276.Google Scholar
  8. [8]
    J. B. Harris, PhD Thesis, University of Exeter (1987).Google Scholar
  9. [9]
    S. J. Wilkin and H. W. K. Cheung, Central Electricity Research Laboratories, Leatherland, UK, Report No. TPRD/L/E 500051/M82 (1982).Google Scholar
  10. [10]
    B. Poulson and R. Robinson,Corros. Sci. 26 (1986) 265.Google Scholar
  11. [11]
    A. A. Wragg, D. J. Tagg and M. A. Patrick,J. Appl. Electrochem. 10 (1980) 43.Google Scholar
  12. [12]
    M. O. Awe, G. P. Hammond and J. Ward, Proc. 7th Int. Heat Transfer Conf., Munich (Sept. 1982) p. 15.Google Scholar
  13. [13]
    B. Poulson,Corros. Sci. 23 (1983) 391.Google Scholar
  14. [14]
    J. G. A. Pembery, PhD Thesis, University of Exeter (1985).Google Scholar
  15. [15]
    A. A. Wragg,Chem. Engr. 316 (1977) 39.Google Scholar
  16. [16]
    J. R. Selman and C. W. Tobias,Adv. Chem. Eng. 10 (1978) 211.Google Scholar
  17. [17]
    F. P. Berger and K-F. F-L. Hau,Int. J. Heat Mass Transfer 20 (1977) 1185.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1987

Authors and Affiliations

  • S. M. Chouikhi
    • 1
  • M. A. Patrick
    • 1
  • A. A. Wragg
    • 1
  1. 1.Department of Chemical EngineeringUniversity of ExeterExeterUK

Personalised recommendations