Skip to main content
Log in

Mass transfer downstream of nozzles in turbulent pipe flow with varying Schmidt number

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Local mass transfer rates at the wall of a pipe downstream of constricting nozzles have been measured using the electrochemical limiting diffusion current technique for different electrolyte Schmidt numbers. The familiar peaked axial distribution of mass transfer downstream of the nozzle was verified and the peak mass transfer values were found to agree well with the data of Tagget al. [1]. An overall correlation of the data in terms of both Reynolds number and nozzle expansion ratio produced the equation

$$({{Sh_{2P} } \mathord{\left/ {\vphantom {{Sh_{2P} } {Sh_{2FD} }}} \right. \kern-\nulldelimiterspace} {Sh_{2FD} }})({{D_1 } \mathord{\left/ {\vphantom {{D_1 } {D_2 }}} \right. \kern-\nulldelimiterspace} {D_2 }})^{ - 0.7} = 14.39Re_2^{ - 0.182} $$

Limiting current-time traces produced evidence of the highly turbulent flow in the recirculation zone near the position of peak mass transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

electrode surface area

D :

diameter

D :

diffusion coefficient

C :

bulk concentration of Fe(CN) 3-6

F :

Faraday number

I L :

limiting current

k :

mass transfer coefficient

u :

liquid velocity

x :

distance downstream of nozzle

μ:

dynamic viscosity

ϱ:

density

Re :

Reynolds number,Duϱ/μ

Sc :

Schmidt number,μD

Sh :

Sherwood number,kD/D

1:

nozzle

2:

downstream pipe

FD:

fully developed

P:

peak (maximum) value

References

  1. D. J. Tagg, M. A. Patrick and A. A. Wragg,Trans. Instn. Chem. Engrs 57 (1979) 176.

    Google Scholar 

  2. K. M. Krall and E. M. Sparrow,J. Heat Transfer 88 (1966) 131.

    Google Scholar 

  3. S. M. Chouikhi, PhD Thesis, University of Exeter (1985).

  4. S. M. Chouikhi, M. A. Patrick and A. A. Wragg, Proc. Int. Conf. Physical Modelling of Multiphase Flow, Coventry, UK, (April 1983), p. 53ff.

  5. Idem, S. M. Chouikhi, M. A. Patrick and A. A. Wragg., Proc. 3rd Int. Conf. Multi-phase Flow, The Hague, Netherlands, May 1987.

  6. A. K. Runchal,Int. J. Heat Mass Transfer 14 (1971) 781.

    Google Scholar 

  7. T. Sydberger and U. Lotz,J. Electrochem. Soc. 129 (1982) 276.

    Google Scholar 

  8. J. B. Harris, PhD Thesis, University of Exeter (1987).

  9. S. J. Wilkin and H. W. K. Cheung, Central Electricity Research Laboratories, Leatherland, UK, Report No. TPRD/L/E 500051/M82 (1982).

  10. B. Poulson and R. Robinson,Corros. Sci. 26 (1986) 265.

    Google Scholar 

  11. A. A. Wragg, D. J. Tagg and M. A. Patrick,J. Appl. Electrochem. 10 (1980) 43.

    Google Scholar 

  12. M. O. Awe, G. P. Hammond and J. Ward, Proc. 7th Int. Heat Transfer Conf., Munich (Sept. 1982) p. 15.

  13. B. Poulson,Corros. Sci. 23 (1983) 391.

    Google Scholar 

  14. J. G. A. Pembery, PhD Thesis, University of Exeter (1985).

  15. A. A. Wragg,Chem. Engr. 316 (1977) 39.

    Google Scholar 

  16. J. R. Selman and C. W. Tobias,Adv. Chem. Eng. 10 (1978) 211.

    Google Scholar 

  17. F. P. Berger and K-F. F-L. Hau,Int. J. Heat Mass Transfer 20 (1977) 1185.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chouikhi, S.M., Patrick, M.A. & Wragg, A.A. Mass transfer downstream of nozzles in turbulent pipe flow with varying Schmidt number. J Appl Electrochem 17, 1118–1128 (1987). https://doi.org/10.1007/BF01023595

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01023595

Keywords

Navigation