Journal of Comparative Physiology A

, Volume 176, Issue 5, pp 587–599 | Cite as

Characterization of auditory afferents in the tiger beetle,Cicindela marutha Dow

  • David D. Yager
  • Hayward G. Spangler
Original Paper


We have identified a nerve carrying auditory afferents and characterized their physiological responses in the tiger beetle,Cicindela marutha.
  1. 1.

    The tympana are located at the lateral margins of the first abdominal tergum. The nerve carrying the tympanal afferents is a branch of the dorsal root from the first abdominal ganglion.

  2. 2.

    Both male and female auditory afferent responses are sharply tuned to 30 kHz with sensitivities of 50–55 dB SPL.

  3. 3.

    The auditory afferents show little adaptation and accurately code the temporal characteristics of the stimulus with the limit of a resolution of 6–10 ms.

  4. 4.

    The difference in threshold between contralateral and ipsilateral afferents for lateral stimuli is greatest at 30 kHz and is at least 10–15 dB.

  5. 5.

    Ablation studies indicate that the floppy membrane in the anterolateral corner of the tympanum is crucial for transduction while the medial portion of the tympanum is less important.

  6. 6.

    The tiger beetle and acridid (locust and grasshopper) ears have evolved independently from homologous peripheral structures. The neural precursor of the tympanal organs in both animals is likely the pleural chordotonal organ of the first abdominal segment.


Key words

Insecthearing Cicindelidae Tympanum Ultrasonic hearing Auditory system evolution 



sound pressure level·


abdominal contraction response


sound pressure level re: 20 μPa


segmental nerve root of the first abdominal ganglion


dorsal branch of nsa1


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albrecht FO (1953) The anatomy of the migratory locust. Athlone Press, LondonGoogle Scholar
  2. Bailey WJ (1990) The ear of the bushcricket. In: Bailey WJ, Rentz DCF (eds) The Tettigoniidae: biology, systematics and evolution. Crawford House Press, Bathurst, pp 217–247Google Scholar
  3. Campbell JI (1961) The anatomy of the nervous system of the mesothorax ofLocusta migratoria migratorioides R. & F. Proc Zool Soc Lond 137: 403–432Google Scholar
  4. Chauthani AR, Callahan PS (1966) A dissection technique for studying internal anatomy of different stadia of Noctuidae. Ann Entomol Soc Am 59: 1017–1018Google Scholar
  5. Cook MA, Scoble MJ (1992) Tympanal organs of geometrid moths: a review of their morphology, function, and systematic importance. Syst Entomol 17: 219–232Google Scholar
  6. Davies RG (1988) Outlines of entomology. Chapman and Hall, London New YorkGoogle Scholar
  7. Dunning DC, Roeder KD (1965) Moth sounds and the insect-catching behavior of bats. Science 147: 173–174Google Scholar
  8. Esch H, Huber F, Wohlers DW (1980) Primary auditory neurons in crickets: Physiology and central projections. J Comp Physiol 137: 27–38Google Scholar
  9. Fenton MB (1985) The feeding behaviour of insectivorous bats: Echolocation, foraging strategies, and resource partitioning. Transvaal Mus Bull 21: 5–16Google Scholar
  10. Fenton MB, Bell GP (1981) Recognition of species of insectivorous bats by their echolocation calls. J Mammology 62: 233–243Google Scholar
  11. Finlayson LH (1976) Abdominal and thoracic receptors in insects, centipedes and scorpions. In: Mill PJ (ed) Structure and function of proprioceptors in the invertebrates. Chapman and Hall, London New York, pp 153–211Google Scholar
  12. Freitag R, Lee SK (1972) Sound producing structures in adultCicindela tranquebarica (Coleoptera: Cicindelidae) including a list of tiger beetles and ground beetles with flight wing files. Can Entomology 104: 851–857Google Scholar
  13. Fullard JH (1987) Sensory ecology and neuroethology of moths and bats: interactions in a global perspective. In: Fenton MB, Racey PA, Rayner JMV (eds) Recent advances in the study of bats. Cambridge University Press, Cambridge, pp 244–272Google Scholar
  14. Fullard JH (1988) The tuning of moth ears. Experientia 44: 423–428Google Scholar
  15. Holste G (1910) Das Nervensystem vonDytiscus marginalis. Ein Beitrag zur Morphologie des Insektenkörpers. Z Wiss Zool 96: 419–476Google Scholar
  16. Jones G, Morton M, Hughes PM, Budden RM (1993) Echolocation, flight morphology and foraging strategies of some West African hipposiderid bats. J Zool, Lond 230: 385–400Google Scholar
  17. Kalmring K, Keuper A, Kaiser W (1990) Aspects of acoustic and vibratory communication in seven European bushcrickets. In: Bailey WJ, Rentz DCF (eds) The Tettigoniidae: biology, systematics and evolution. Crawford House Press, Bathurst, pp 191–216Google Scholar
  18. Kennel JV, Eggers F (1933) Die abdominalen Tympanalorgane der Lepidopteren. Zool Jb Anat 57: 1–104Google Scholar
  19. Larsen O (1966) On the morphology and function of the locomotor organs of the Gyrinidae and other Coleoptera. Opusc Entomol Suppl. XXX: 1–242Google Scholar
  20. Lewis DB (1983) Directional cues for auditory localization. In: Lewis DB (ed) Bioacoustics — A comparative approach. Academic Press, London New York, pp 233–260Google Scholar
  21. Libersat F, Hoy RR (1991) Ultrasonic startle behavior in bush-crickets (Orthoptera; Tettigoniidae). J Comp Physiol A 169: 507–514Google Scholar
  22. McIver SB (1985) Mechanoreception. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry, and pharmacology. Pergamon Press, Oxford, pp 71–132Google Scholar
  23. Meier T, Reichert H (1990) Embryonic development and evolutionary origin of the orthopteran auditory organs. J Neurobiol 21: 592–610Google Scholar
  24. Michel K (1975) Das Tympanalorgan vonCicada orni L. (Cicadina, Homoptera). Eine licht- und electronenmikroskopische Untersuchung. Zoomorphologie 82: 63–78Google Scholar
  25. Michelsen A, Larsen ON (1985) Hearing and sound. In: Kerkut GA Gilbert LI (eds) Comprehensive insect physiology, biochemistry, and pharmacology. Pergamon, Oxford, pp 495–556Google Scholar
  26. Miller LA (1984) Hearing in green lacewings and their responses to the cries of bats. In: Canard M, Séméria Y, New TR (eds) Biology of Chrysopidae. Junk Publishers, The Hague, pp 134–149Google Scholar
  27. Miller LA (1991) Arctiid moth clicks can degrade the accuracy of range difference discrimination in echolocating big brown bats,Eptesicus fuscus. J Comp Physiol A 168: 571–579Google Scholar
  28. Minet J (1983) Etude morphologique et phylogénétique des organes tympaniques des Pyraloidea. 1. Généralités et homologies. (Lep. Glossata). Ann Soc Entomol France 21: 175–207Google Scholar
  29. Nation JL (1983) A new method using hexamethyldisilazane for preparation of soft insect tissues for scanning electron microscopy. Stain Technol 58: 347–351Google Scholar
  30. Nolen TG, Hoy RR (1986) Phonotaxis in flying crickets. I. Attraction to the calling song and avoidance of bat-like ultrasound are discrete behaviors. J Comp Physiol A 159: 423–439Google Scholar
  31. Pearson DL (1988) Biology of tiger beetles (Coleoptera: Cicindelidae). Annu Rev Entomol 33: 123–147Google Scholar
  32. Rehbein H, Kalmring K, Römer H (1974) Structure and function of acoustic neurons in the thoracic ventral nerve cord ofLocusta migratoria (Acrididae). J Comp Physiol 95: 263–280Google Scholar
  33. Robert D (1989) The auditory behavior of flying locusts. J Exp Biol 147: 279–301Google Scholar
  34. Robert D, Read MP, Hoy RR (1994) The tympanal hearing organ of the parasitoid flyOrmia ochracea (Diptera, Tachinidae, Ormiini). Cell Tissue Res 275: 63–78Google Scholar
  35. Schmitt JB (1959) The cervicothoracic nervous system of a grasshopper. Smithsonian Misc Coll 137: 307–329Google Scholar
  36. Slifer EH (1936) The scoloparia ofMelanoplus differentialis (Orthoptera Acrididae). Entomol News 47: 174–180Google Scholar
  37. Spangler HG (1988a) Hearing in tiger beetles (Cicindelidae). Physiol Entomol 13: 447–452Google Scholar
  38. Spangler HG (1988b) Moth hearing, defense, and communication. Annu Rev Entomol 33: 59–81Google Scholar
  39. Strausfeld NJ, Seyan NJ, Wohlers DW, Bacon JP (1983) Lucifer yellow histology. In: Strausfeld NJ (ed) Functional neuroanatomy. Springer, Berlin, pp 132–155Google Scholar
  40. Tyrer NM, Gregory GE (1982) A guide to the neuroanatomy of locust suboesophageal and thoracic ganglia. Phil Trans R Soc Lond B 297: 91–123Google Scholar
  41. Uvarov BP (1966) Grasshoppers and locusts. A handbook of general acridology. Cambridge University Press, CambridgeGoogle Scholar
  42. Wiley EO (1981) Phylogenetics. The theory and practice of phylogenetic systematics. John Wiley and Sons, New YorkGoogle Scholar
  43. Wright BR (1976) Limb and wing receptors in insects, chelicerates and myriapods. In: Mill PJ (ed) Structure and function of proprioceptors in the invertebrates. Chapman and Hall, London, pp 323–386Google Scholar
  44. Yack JE (1992) A multiterminal stretch receptor, chordotonal organ, and hair plate at the wing-hinge ofManduca sexta: Unravelling the mystery of the noctuid moth ear B cell. J Comp Neurol 324: 500–508Google Scholar
  45. Yack JE (1993) Janus Green B as a rapid, vital stain for peripheral nerves and chordotonal organs in insects. J Neurosci Methods 49: 17–22Google Scholar
  46. Yack JE, Fullard JH (1990) The mechanoreceptive origin of insect tympanal organs: A comparative study of similar nerves in tympanate and atympanate moths. J Comp Neurol 300: 523–534Google Scholar
  47. Yack JE, Fullard JH (1993) What is an insect ear? Ann Entomol Soc Am 86: 677–682Google Scholar
  48. Yack JE, Roots BI (1992) The metathoracic wing-hinge chordotonal organ of an atympanate moth,Actias tuna (Lepidoptera, Saturniidae): a light- and electron-microscopic study. Cell Tissue Res 267: 455–471Google Scholar
  49. Yager DD, Hoy RR (1986) The cyclopean ear: A new sense for the praying mantis. Science 231: 727–729Google Scholar
  50. Yager DD, Hoy RR (1989) Audition in the praying mantis,Mantis religiosa L.: Identification of an interneuron mediating ultrasonic hearing. J Comp Physiol A 165: 471–493Google Scholar
  51. Yager DD, May ML (1990) Ultrasound-triggered, flight-gated evasive maneuvers in the praying mantis,Parasphendale agrionina (Gerst.). II. Tethered flight. J Exp Biol 152: 41–58Google Scholar
  52. Yager DD, May ML, Fenton MB (1990) Ultrasound-triggered, flight-gated evasive maneuvers in the praying mantis,Parasphendale agrionina (Gerst.). I. Free flight. J Exp Biol 152: 17–39Google Scholar
  53. Young D, Hill KG (1977) Structure and function of the auditory system of the cicada,Cystosoma saundersii. J Comp Physiol 117: 23–45Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • David D. Yager
    • 1
  • Hayward G. Spangler
    • 2
  1. 1.Department of PsychologyUniversity of MarylandCollege ParkUSA
  2. 2.U.S. Department of AgricultureAgriculture Research Service, Carl Hayden Bee Research CenterTucsonUSA

Personalised recommendations