Skip to main content
Log in

Characterization of auditory afferents in the tiger beetle,Cicindela marutha Dow

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

We have identified a nerve carrying auditory afferents and characterized their physiological responses in the tiger beetle,Cicindela marutha.

  1. 1.

    The tympana are located at the lateral margins of the first abdominal tergum. The nerve carrying the tympanal afferents is a branch of the dorsal root from the first abdominal ganglion.

  2. 2.

    Both male and female auditory afferent responses are sharply tuned to 30 kHz with sensitivities of 50–55 dB SPL.

  3. 3.

    The auditory afferents show little adaptation and accurately code the temporal characteristics of the stimulus with the limit of a resolution of 6–10 ms.

  4. 4.

    The difference in threshold between contralateral and ipsilateral afferents for lateral stimuli is greatest at 30 kHz and is at least 10–15 dB.

  5. 5.

    Ablation studies indicate that the floppy membrane in the anterolateral corner of the tympanum is crucial for transduction while the medial portion of the tympanum is less important.

  6. 6.

    The tiger beetle and acridid (locust and grasshopper) ears have evolved independently from homologous peripheral structures. The neural precursor of the tympanal organs in both animals is likely the pleural chordotonal organ of the first abdominal segment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

SPL :

sound pressure level·

ACR :

abdominal contraction response

dB SPL :

sound pressure level re: 20 μPa

nsa 1 :

segmental nerve root of the first abdominal ganglion

nsa 1 :

dorsal branch of nsa1

References

  • Albrecht FO (1953) The anatomy of the migratory locust. Athlone Press, London

    Google Scholar 

  • Bailey WJ (1990) The ear of the bushcricket. In: Bailey WJ, Rentz DCF (eds) The Tettigoniidae: biology, systematics and evolution. Crawford House Press, Bathurst, pp 217–247

    Google Scholar 

  • Campbell JI (1961) The anatomy of the nervous system of the mesothorax ofLocusta migratoria migratorioides R. & F. Proc Zool Soc Lond 137: 403–432

    Google Scholar 

  • Chauthani AR, Callahan PS (1966) A dissection technique for studying internal anatomy of different stadia of Noctuidae. Ann Entomol Soc Am 59: 1017–1018

    Google Scholar 

  • Cook MA, Scoble MJ (1992) Tympanal organs of geometrid moths: a review of their morphology, function, and systematic importance. Syst Entomol 17: 219–232

    Google Scholar 

  • Davies RG (1988) Outlines of entomology. Chapman and Hall, London New York

    Google Scholar 

  • Dunning DC, Roeder KD (1965) Moth sounds and the insect-catching behavior of bats. Science 147: 173–174

    Google Scholar 

  • Esch H, Huber F, Wohlers DW (1980) Primary auditory neurons in crickets: Physiology and central projections. J Comp Physiol 137: 27–38

    Google Scholar 

  • Fenton MB (1985) The feeding behaviour of insectivorous bats: Echolocation, foraging strategies, and resource partitioning. Transvaal Mus Bull 21: 5–16

    Google Scholar 

  • Fenton MB, Bell GP (1981) Recognition of species of insectivorous bats by their echolocation calls. J Mammology 62: 233–243

    Google Scholar 

  • Finlayson LH (1976) Abdominal and thoracic receptors in insects, centipedes and scorpions. In: Mill PJ (ed) Structure and function of proprioceptors in the invertebrates. Chapman and Hall, London New York, pp 153–211

    Google Scholar 

  • Freitag R, Lee SK (1972) Sound producing structures in adultCicindela tranquebarica (Coleoptera: Cicindelidae) including a list of tiger beetles and ground beetles with flight wing files. Can Entomology 104: 851–857

    Google Scholar 

  • Fullard JH (1987) Sensory ecology and neuroethology of moths and bats: interactions in a global perspective. In: Fenton MB, Racey PA, Rayner JMV (eds) Recent advances in the study of bats. Cambridge University Press, Cambridge, pp 244–272

    Google Scholar 

  • Fullard JH (1988) The tuning of moth ears. Experientia 44: 423–428

    Google Scholar 

  • Holste G (1910) Das Nervensystem vonDytiscus marginalis. Ein Beitrag zur Morphologie des Insektenkörpers. Z Wiss Zool 96: 419–476

    Google Scholar 

  • Jones G, Morton M, Hughes PM, Budden RM (1993) Echolocation, flight morphology and foraging strategies of some West African hipposiderid bats. J Zool, Lond 230: 385–400

    Google Scholar 

  • Kalmring K, Keuper A, Kaiser W (1990) Aspects of acoustic and vibratory communication in seven European bushcrickets. In: Bailey WJ, Rentz DCF (eds) The Tettigoniidae: biology, systematics and evolution. Crawford House Press, Bathurst, pp 191–216

    Google Scholar 

  • Kennel JV, Eggers F (1933) Die abdominalen Tympanalorgane der Lepidopteren. Zool Jb Anat 57: 1–104

    Google Scholar 

  • Larsen O (1966) On the morphology and function of the locomotor organs of the Gyrinidae and other Coleoptera. Opusc Entomol Suppl. XXX: 1–242

    Google Scholar 

  • Lewis DB (1983) Directional cues for auditory localization. In: Lewis DB (ed) Bioacoustics — A comparative approach. Academic Press, London New York, pp 233–260

    Google Scholar 

  • Libersat F, Hoy RR (1991) Ultrasonic startle behavior in bush-crickets (Orthoptera; Tettigoniidae). J Comp Physiol A 169: 507–514

    Google Scholar 

  • McIver SB (1985) Mechanoreception. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry, and pharmacology. Pergamon Press, Oxford, pp 71–132

    Google Scholar 

  • Meier T, Reichert H (1990) Embryonic development and evolutionary origin of the orthopteran auditory organs. J Neurobiol 21: 592–610

    Google Scholar 

  • Michel K (1975) Das Tympanalorgan vonCicada orni L. (Cicadina, Homoptera). Eine licht- und electronenmikroskopische Untersuchung. Zoomorphologie 82: 63–78

    Google Scholar 

  • Michelsen A, Larsen ON (1985) Hearing and sound. In: Kerkut GA Gilbert LI (eds) Comprehensive insect physiology, biochemistry, and pharmacology. Pergamon, Oxford, pp 495–556

    Google Scholar 

  • Miller LA (1984) Hearing in green lacewings and their responses to the cries of bats. In: Canard M, Séméria Y, New TR (eds) Biology of Chrysopidae. Junk Publishers, The Hague, pp 134–149

    Google Scholar 

  • Miller LA (1991) Arctiid moth clicks can degrade the accuracy of range difference discrimination in echolocating big brown bats,Eptesicus fuscus. J Comp Physiol A 168: 571–579

    Google Scholar 

  • Minet J (1983) Etude morphologique et phylogénétique des organes tympaniques des Pyraloidea. 1. Généralités et homologies. (Lep. Glossata). Ann Soc Entomol France 21: 175–207

    Google Scholar 

  • Nation JL (1983) A new method using hexamethyldisilazane for preparation of soft insect tissues for scanning electron microscopy. Stain Technol 58: 347–351

    Google Scholar 

  • Nolen TG, Hoy RR (1986) Phonotaxis in flying crickets. I. Attraction to the calling song and avoidance of bat-like ultrasound are discrete behaviors. J Comp Physiol A 159: 423–439

    Google Scholar 

  • Pearson DL (1988) Biology of tiger beetles (Coleoptera: Cicindelidae). Annu Rev Entomol 33: 123–147

    Google Scholar 

  • Rehbein H, Kalmring K, Römer H (1974) Structure and function of acoustic neurons in the thoracic ventral nerve cord ofLocusta migratoria (Acrididae). J Comp Physiol 95: 263–280

    Google Scholar 

  • Robert D (1989) The auditory behavior of flying locusts. J Exp Biol 147: 279–301

    Google Scholar 

  • Robert D, Read MP, Hoy RR (1994) The tympanal hearing organ of the parasitoid flyOrmia ochracea (Diptera, Tachinidae, Ormiini). Cell Tissue Res 275: 63–78

    Google Scholar 

  • Schmitt JB (1959) The cervicothoracic nervous system of a grasshopper. Smithsonian Misc Coll 137: 307–329

    Google Scholar 

  • Slifer EH (1936) The scoloparia ofMelanoplus differentialis (Orthoptera Acrididae). Entomol News 47: 174–180

    Google Scholar 

  • Spangler HG (1988a) Hearing in tiger beetles (Cicindelidae). Physiol Entomol 13: 447–452

    Google Scholar 

  • Spangler HG (1988b) Moth hearing, defense, and communication. Annu Rev Entomol 33: 59–81

    Google Scholar 

  • Strausfeld NJ, Seyan NJ, Wohlers DW, Bacon JP (1983) Lucifer yellow histology. In: Strausfeld NJ (ed) Functional neuroanatomy. Springer, Berlin, pp 132–155

    Google Scholar 

  • Tyrer NM, Gregory GE (1982) A guide to the neuroanatomy of locust suboesophageal and thoracic ganglia. Phil Trans R Soc Lond B 297: 91–123

    Google Scholar 

  • Uvarov BP (1966) Grasshoppers and locusts. A handbook of general acridology. Cambridge University Press, Cambridge

    Google Scholar 

  • Wiley EO (1981) Phylogenetics. The theory and practice of phylogenetic systematics. John Wiley and Sons, New York

    Google Scholar 

  • Wright BR (1976) Limb and wing receptors in insects, chelicerates and myriapods. In: Mill PJ (ed) Structure and function of proprioceptors in the invertebrates. Chapman and Hall, London, pp 323–386

    Google Scholar 

  • Yack JE (1992) A multiterminal stretch receptor, chordotonal organ, and hair plate at the wing-hinge ofManduca sexta: Unravelling the mystery of the noctuid moth ear B cell. J Comp Neurol 324: 500–508

    Google Scholar 

  • Yack JE (1993) Janus Green B as a rapid, vital stain for peripheral nerves and chordotonal organs in insects. J Neurosci Methods 49: 17–22

    Google Scholar 

  • Yack JE, Fullard JH (1990) The mechanoreceptive origin of insect tympanal organs: A comparative study of similar nerves in tympanate and atympanate moths. J Comp Neurol 300: 523–534

    Google Scholar 

  • Yack JE, Fullard JH (1993) What is an insect ear? Ann Entomol Soc Am 86: 677–682

    Google Scholar 

  • Yack JE, Roots BI (1992) The metathoracic wing-hinge chordotonal organ of an atympanate moth,Actias tuna (Lepidoptera, Saturniidae): a light- and electron-microscopic study. Cell Tissue Res 267: 455–471

    Google Scholar 

  • Yager DD, Hoy RR (1986) The cyclopean ear: A new sense for the praying mantis. Science 231: 727–729

    Google Scholar 

  • Yager DD, Hoy RR (1989) Audition in the praying mantis,Mantis religiosa L.: Identification of an interneuron mediating ultrasonic hearing. J Comp Physiol A 165: 471–493

    Google Scholar 

  • Yager DD, May ML (1990) Ultrasound-triggered, flight-gated evasive maneuvers in the praying mantis,Parasphendale agrionina (Gerst.). II. Tethered flight. J Exp Biol 152: 41–58

    Google Scholar 

  • Yager DD, May ML, Fenton MB (1990) Ultrasound-triggered, flight-gated evasive maneuvers in the praying mantis,Parasphendale agrionina (Gerst.). I. Free flight. J Exp Biol 152: 17–39

    Google Scholar 

  • Young D, Hill KG (1977) Structure and function of the auditory system of the cicada,Cystosoma saundersii. J Comp Physiol 117: 23–45

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yager, D.D., Spangler, H.G. Characterization of auditory afferents in the tiger beetle,Cicindela marutha Dow. J Comp Physiol A 176, 587–599 (1995). https://doi.org/10.1007/BF01021579

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01021579

Key words

Navigation