Skip to main content
Log in

Ozone-induced changes in host-plant suitability: Interactions ofKeiferia lycopersicella andLycopersicon esculentum

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Tomato pinworms,Keiferia lycopersicella (Walsingham), survived better and developed faster on tomato plants,Lycopersicon esculentum Mill., damaged by ozone than on plants not subjected to ozone fumigation. Other measures of fitness, including survival during pupation, sex ratio of adults, female longevity, and fecundity, were not affected. Analyses of ozonated foliage at zero, two, and seven days following fumigation demonstrated a transient but significant increase (18–24%) in soluble protein concentration. Although the concentration of the total free amino acids in ozonated foliage did not increase significantly, significant changes were observed in at least 10 specific amino acids, some of which are critical for either insect development or the production of plant defensive chemicals. A reduction in total nitrogen in ozonated foliage at seven days postfumigation indicated that nitrogen was being translocated to other portions of the plant. The implications of increases in assimilable forms of nitrogen in ozonated foliage, which lead to improved host-plant suitability for insect herbivores, are discussed both in relation to some current ecological theories and in regard to pest-management strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alstad, D.N., Edmunds, G.F., Jr., andWeinstein, L.H. 1982. Effects of air pollutants on insect populations.Annu. Rev. Entomol. 27:369–384.

    Google Scholar 

  • Arai, N., andIto, T. 1964. Amino acid requirements of the silkworm,Bombyx mori L.J. Seric. Sci. Jp. 33:107–110.

    Google Scholar 

  • Beard, R. 1965. Observations on house flies in high-ozone environments.Ann. Entomol. Soc. Am. 58: 404–405.

    Google Scholar 

  • Beckerson, D.W., andHofstra, G. 1979. Effects of sulphur dioxide and ozone singly or in combination on leaf chlorophyll, RNA, and protein in white bean.Can. J. Bot. 57:1940–1945.

    Google Scholar 

  • Bradford, M.M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principal of protein binding.Anal. Biochem. 72:248–254.

    Google Scholar 

  • Cardona, C., andOatman, E.R. 1971. Biology ofApanteles dignus (Hymenoptera: Braconidae) a primary parasite of the tomato pinworm.Ann. Entomol. Soc. Am. 64:996–1007.

    Google Scholar 

  • Carrasco, A., Boudet, A.M., andMarigo, G. 1978. Enhanced resistance of tomato plants toFusarium by controlled stimulation of their natural phenolic production.Physiol. Plant Pathol. 12:225–232.

    Google Scholar 

  • Chang, C.W. 1971a. Effect of ozone on sulfhydryl groups of ribosomes in pinto bean leaves; Relationship with ribosome dissociation.Biochem. Biophys. Res. Commun. 44:1429–1435.

    Google Scholar 

  • Chang, C.W. 1971b. Effect of ozone on ribosomes in pinto bean leaves.Phytochemistry 10:2863–2868.

    Google Scholar 

  • Craker, L.E., andStarbuck, J.S. 1972. Metabolic changes associated with ozone injury of bean leaves.Can. J. Plant Sci. 52:589–597.

    Google Scholar 

  • Dadd, R.H. 1973. Insect nutrition: Current developments and metabolic implications.Annu. Rev. Entomol. 18:381–420.

    Google Scholar 

  • Dohmen, G.P., McNeil, S., andBell, J.N.B. 1984. Air pollution increasesAphis fabae pest potential.Nature 307:52–53.

    Google Scholar 

  • Dugger, W.M., Jr., Taylor, O.C., Cardiff, E., andThompson, C.R. 1962. Stomatal action in plants as related to damage from photochemical oxidants.Plant Physiol. 37:487–491.

    Google Scholar 

  • Duncan, D.B. 1955. Multiple range and multiple F tests.Biometrics 11:1–41.

    Google Scholar 

  • Elliger, C. A., Wong, Y., Chan, B.G., andWaiss, A.C., Jr., 1981. Growth inhibitors in tomato (Lycopersicon) to tomato fruitworms (Heliothis zea).J. Chem. Ecol. 7:753–758.

    Google Scholar 

  • Endress, A.G., andPost, S.L. 1985. Altered feeding preference of Mexican bean beetleEplilachna varivestis for ozonated soybean foliage.Environ. Pollut. 39:9–16.

    Google Scholar 

  • Environmental Protection Agency. 1978. Diagnosing vegetation injury caused by air pollution. Office of Air and Waste Management, Office of Air Quality Planning and Standards, Research Triangle Park, North Carolina. Report EPA-450/3-78-005. 274 pp.

  • Friend, W.G. 1968. The nutritional requirement of Diptera, pp. 41–57,in M. Krippner (ed.). Radiation, Radioisotopes and Rearing Methods in the Control of Insect Pests. Proc. IAEA, Vienna, Austria.

  • Gingrich, R.E. 1964. Nutritional studies on screworm larvae with chemically defined media.Ann. Entomol. Soc. Am. 57:351–360.

    Google Scholar 

  • Hare, J.D. 1983. Seasonal variation in plant-insect associations: Utilization ofSolanum dulcamara byLeptinotarsa decemlineata.Ecology 64:345–361.

    Google Scholar 

  • Heath, R.L. 1980. Initial events in injury to plants by air pollutants.Annu. Rev. Plant Physiol. 31:395–431.

    Google Scholar 

  • Heck, W.W.,Philbeck, R.B., andDunning, J.A. 1978. A continuous stirred tank reactor (CSTR) for exposing plants to gaseous air pollutants: Principles, specifications, construction, and operation. U.S. Dept. of Agric. ARS-S-181. 32 pp.

  • House, H.L., andBarlow, J.S. 1964. Effects on the parasitoidAgria affinis, of small molecules in diets.J. Insect Physiol. 10:225–260.

    Google Scholar 

  • Hughes, P.R., Potter, J.E., Weinstein, L.H. 1981. Effects of air pollutants on plant-insect interactions: Reactions of the Mexican bean beetle to SO2-fumigated pinto beans.Environ. Entomol. 10:741–744.

    Google Scholar 

  • Ito, T., andArai, N. 1965. Nutrition of silkworm,Bombyx mori, VIII. Amino acid requirements and nutritive effect of various proteins.Bull. Serie. Expt. Stn., Tokyo 19:345–373.

    Google Scholar 

  • Ito, T., andArai, N. 1966. Nutrition of the silkworm,Bombyx mori—requirements for aspartic and glutamic acids.J. Insect Physiol. 12:861–869.

    Google Scholar 

  • Ito, T., andArai, N. 1967. Nutritive effects of alanine, cystine, glycine, serine, and tyrosine on the silkworm,Bombyx mori.J. Insect Physiol. 13:1813–1824.

    Google Scholar 

  • Jaeger, H.J., Pahlich, E., andSteubing, L. 1972. Die Wirkung von Schweffeldioxid auf den Aminosaure und proteingehalt von Erbsenkeimlingen.Angew. Bot. 46:199–211.

    Google Scholar 

  • Jeffords, M.R., andEndress, A.G. 1984. A possible role of ozone in tree defoliation by the gypsy moth (Lepidoptera: Lymantriidae).Environ. Entomol. 13:1249–1252.

    Google Scholar 

  • Leung, S.K., Reed, W., andGeng, S. 1982. Estimations of ozone damage to selected crops grown in southern California.J. Air Pollut. Control Assoc. 32:160–164.

    Google Scholar 

  • Levy, R., Jouvenaz, D.P., andCromroy, H.L. 1974. Tolerence of three species of insects to prolonged exposures to ozone.Environ. Entomol. 3:184–185.

    Google Scholar 

  • Lin, S.Y.H., andTrumble, J.T. 1985. Influence of temperature and tomato maturity on development and survival ofKeiferia lycopersicella (Lepidoptera: Gelechiidae).Environ. Entomol. 14:855–858.

    Google Scholar 

  • Matkin, O.A., andChandler, P.A. 1957. The U.C.-type soil mixes, pp. 68–86,in K.F. Baker (ed.). The U.C. System for Producing Healthy Container Grown Plants. Calif. Expt. Stn. Manual 23. Univ. Calif. Div. Agric. Sci., Berkeley. 332 pp.

    Google Scholar 

  • Mattson, W.J., Jr. 1980. Herbivory in relation to plant nitrogen content.Annu. Rev. Ecol. Syst. 11:119–161.

    Google Scholar 

  • McCooL, P.M., andMenge, J.A. 1983. Influences of ozone on carbon partitioning in tomato: potential role of carbon flow in regulation of the mycorrhizal symbiosis under conditions of stress.New Phytol. 94:241–247.

    Google Scholar 

  • McKenzie, H.A., andWallace, H.S. 1954. The Kjeldahl determination of nitrogen: a critical study of digestion conditions, temperature, catalyst and oxidizing agent.Aust. J. Chem. 7:55–70.

    Google Scholar 

  • Menzel, D.B. 1971. Oxidation of biologically active reducing substances by ozone.Arch. Environ. Health 23:149–153.

    Google Scholar 

  • Mudd, J.B., andFreeman, B.A. 1977. Reaction of ozone with biological membranes, pp. 97–133,in S.D. Lee (ed.). Biochemical Effects of Environmental Pollutants. Ann Arbor Science Publishers, Inc., Ann Arbor, Michigan.

    Google Scholar 

  • Mudd, J.B., Leavitt, R., Ongun, A., andMcManus, T.T. 1969. Reaction of ozone with amino acids and proteins.Atmos. Environ. 3:669–682.

    Google Scholar 

  • Musselman, R.C., McCooL, P.M., Oshima, R.J., andTeso, R.R. 1986. Field chambers for assessing crop loss from air pollutants.J. Environ. Quality. 15:152–157.

    Google Scholar 

  • Oatman, E.R., Wyman, J.A., andPlatner, G.R. 1979. Seasonal occurrence and parasitization of the tomato pinworm on fresh market tomatoes in southern California.Environ. Entomol. 8:661–664.

    Google Scholar 

  • Onuf, C.P. 1978. Nutritive value as a factor in plant-insect interactions with an emphasis on field studies, pp. 85–96,in G. Montgomery (ed.). The Ecology of Arboreal Folivores. Smithsonian Institution Press, Washington, D.C.

    Google Scholar 

  • Ormrod, D.P., Black, V.J., andLinsworth, M.H. 1981. Depression of net photosynthesis inVicta faba L. exposed to sulphur dioxide and ozone.Nature 291:585–586.

    Google Scholar 

  • Perkins, H.C. 1974. Air Pollution. McGraw-Hill, New York, 407 pp.

    Google Scholar 

  • Prestidge, R.A. 1982. Instar duration, adult consumption, oviposition and nitrogen utilization efficiencies of leafhoppers feeding on different quality food (Auchenorrhyncha: Homoptera).Ecol. Entomol. 7:91–101.

    Google Scholar 

  • Reich, P.B., andAmundson, R.G. 1985. Ambient levels of ozone reduce net photosynethesis in tree and crop species.Science 230:566–570.

    Google Scholar 

  • Rhodes, J.M., andWooltorton, L.S.C. 1978. The biosynthesis of phenolic compounds in wounded plant storage tissues, pp. 243–286,in G. Kahl (ed.). Biochemistry of Wounded Plant Tissues. Walter de Gruyter, Berlin.

    Google Scholar 

  • Schuster, D.J., andBurton, R.L. Rearing the tomato pinworm (Lepidoptera: Gelechiidae) in the laboratory.J. Econ. Entomol. 75:1164–1165.

  • Slansky, F., Jr., andFeeny, P. 1977. Stabilization of the rate of nitrogen accumulation by larvae of the cabbage butterfly on wild and cultivated food plants.Ecol. Monogr. 47:209–228.

    Google Scholar 

  • Strong, D.R., Lawton, J.H., andSouthwood, R. 1984. Insects on Plants. Harvard University Press, Cambridge, Massachusetts, 313 pp.

    Google Scholar 

  • Ting, I.P. 1982. Plant Physiology. Addison-Wesley, Reading, Massachusetts, 642 pp.

    Google Scholar 

  • Ting, I.P., andMukerji, S.K. 1971. Leaf ontogeny as a factor in susceptibility to ozone: Amino acid and carbohydrate changes during expansion.Am. J. Bot. 58:497–504.

    Google Scholar 

  • Tingey, D.T., Fites, R.C., andWickliff, C. 1973. Folliar sensitivity of soybeans to ozone as related to several leaf parameters.Environ. Pollut. 4:183–192.

    Google Scholar 

  • Todd, G.W., andPropst, B. 1963. Changes in transpiration and photosynthetic rates of leaves during treatment with ozonated hexene or ozone gas.Physiol. Plantarum 16:57–65.

    Google Scholar 

  • Vanderzant, E.S. 1957. Growth and reproduction of the pink bollworm on an amino acid medium.J. Econ. Entomol. 50:219–221.

    Google Scholar 

  • Vanderzant, E.S. 1966. Defined diets for phytophagous insects, pp. 273–303,in C.N. Smith (ed.). Insect Colonization and Mass Production. Academic Press, New York, 618 pp.

    Google Scholar 

  • Wellik, M.J., Slosser, J.E., andKirby, R.D. 1979. Evaluation of procedures for samplingHeliothis zea andKeiferia lycopersicella on tomatoes.J. Econ. Entomol. 72:777–780.

    Google Scholar 

  • White, T.C.R. 1984. The abundance of invertebrate herbivores in relation to the availability of nitrogen in stressed food plants.Oecologia 63:90–105.

    Google Scholar 

  • Wolfenbarger, D.O., Cornell, J.A., Walker, S.D., andWolfenbarger, D.A. 1975. Control and sequential sampling for damage by the tomato pinworm.J. Econ. Entomol. 68:459–460.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trumble, J.T., Daniel Hare, J., Musselman, R.C. et al. Ozone-induced changes in host-plant suitability: Interactions ofKeiferia lycopersicella andLycopersicon esculentum . J Chem Ecol 13, 203–218 (1987). https://doi.org/10.1007/BF01020363

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01020363

Key words

Navigation