Skip to main content
Log in

Nusselt number correlations for heat transfer to small spheres in thermal plasma flows

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Seven different equations predicting heat transfer rates to small spheres in plasma flows are examined considering argon and nitrogan as plasma gases from 300 to 21,000 K at 1 atm. For argon there is a general consensus up to 9000 K, beyond which wide deviations in behavior occur. For nitrogen, the seven correlations are in good agreement up to 4000 K, but show substantial deviations beyond this value. Comparisons with the sparsely available experimental data are made for argon from 300 to 17,000 K and for nitrogen up to 5500 K. Disagreement between the various correlations and experiment can exceed one order of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C p :

specific heat at constant pressure

D :

sphere diameter

h :

heat transfer coefficient

i :

enthalpy

Nu:

Nusselt number

Pr:

Prandtl number

\(\dot q\) :

heat flow [W]

\(\dot {q}^"\) :

heat flux [W/m2]

Re:

Reynolds number

S :

\(S_\infty = \int_{T_0 }^{T_\infty } {\kappa dT}\) = heat conductivity potential at free-stream conditions

S w :

\(S_w = \int_{T_0 }^{T_w } {\kappa dT}\) = heat conductivity potential at the walll

T :

temperature

T 0 :

300 K

U :

velocity

K :

thermal conductivity

ρ:

density

μ:

viscosity

ν:

kinematic viscosity

∞:

free-stream conditions, also referred to as gas or plasma

w:

wall conditions, at sphere's surface

f:

film conditions, refers to the arithmetic mean of wall and plasma temperatures

References

  1. J. A. Lewis and W. H. Gauvin, “Motion of Particles Entrained in a Plasma Jet,”AIChE J. 19, 982 (1973).

    Google Scholar 

  2. J. K. Fiszdon, “Melting of Powder Grains in a Plasma Flame,”Int. J. Heat Mass Transfer 22, 749 (1979).

    Google Scholar 

  3. N. N. Sayegh and W. H. Gauvin, “Numerical Analysis of Variable Property Heat Transfer to a Single Sphere in High Temperature Surroundings,”AIChE J. 25, 522 (1979).

    Google Scholar 

  4. N. N. Sayegh and W. H. Gauvin, “Heat Transfer to Spherical Particles Exposed to Plasma Flames,” Third International Symposium on Plasma Chemistry, University of Limoges, Limoges, France (1977), Vol. III, p. S.3.5.

    Google Scholar 

  5. N. N. Sayegh and W. H. Gauvin, “Heat transfer to a Stationary Sphere in a Plasma Flame,”AIChE J. 25, 1057 (1979).

    Google Scholar 

  6. Y. C. Lee, K. C. Hsu, and E. Pfender, “Modeling of Particles Injected into a D.C. Plasma Jet,” Fifth International Symposium on Plasma Chemistry, Heriot-Watt University, Edinburgh, Scotland (1981), Vol. 2, p. 795.

    Google Scholar 

  7. Y. C. Lee, Y. P. Chyou, and E. Pfender, “Particle Dynamics and Particle Heat and Mass Transfer in Thermal Plasmas. Part II. Particle Heat and Mass Transfer in Thermal Plasmas,”Plasma Chem. Plasma Process. 5, 391 (1985).

    Google Scholar 

  8. M. Vardelle, A. Vardelle, P. Fauchais, and M. I. Boulos, “Plasma-Particle Momentum and Heat Transfer: Modeling and Measurements,”AIChE J. 29, 236 (1983).

    Google Scholar 

  9. I. V. Kalganova, and V. S. Klubnikin, “Heat Transfer to a Sphere in an Ionized Gas,”High Temp. 14, 369 (1976). [English translation ofTeplofiz. Vys. Temp. 14, 408 (1976)].

    Google Scholar 

  10. Xi Chen and B. Lin, “On Coupling Effects between a Thermal Plasma Flow and Injected Partocles,” Seventh International Symposium on Plasma Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands (1985), Vol. 3, p. 86.

    Google Scholar 

  11. Xi Chen, “On the Applicability of Available Expressions for Heat Transfer to a Particle Exposed to a Thermal Plasma Flow,” International Conference of Plasma Science and Technology, June 4–7, 1986, Hemisphere Publishing Co., Beijing, People's Republic of China (to be published).

  12. Xi Chen, “A Proposed Expression for Heat Transfer between a Thermal Plasma Flow and a Particle,” Symposium Proceedings, International Symposium on Heat Transfer, October 15–18, 1985, Hemisphere Publishing Co., Beijing, People's Republic of China (to be published).

  13. W. E. Ranz and W. R. Marshall, Jr., “Evaporation from Drops,”Chem. Eng. Prog. 48, 141 (1952);48, 173 (1952).

    Google Scholar 

  14. E. R. G. Eckert and E. Pfender, “Plasma Heat Transfer,” inAdvances in Heat Transfer, J. P. Hartnett and T. F. Irvin eds. Vol. 4, Academic Press, New York (1967).

    Google Scholar 

  15. R. B. Bird, W. E. Stewart, and E. N. Lightfoot,Transport Phenomena, Wiley, New York (1960).

    Google Scholar 

  16. I. Kimura and A. Kanzawa, “Experiments on Heat Transfer to Wires in a Partially Ionized Argon Plasma,”AIAA J. 3, 476 (1965).

    Google Scholar 

  17. Y. P. Chyou, “Modeling of a Convection-Stabilized Arc with Particle Injection,” M.S.M.E. Thesis, University of Minnesota (1984).

  18. R. S. De Voto, “Transport Coefficients of Ionized Argon,”Phys. Fluids 16, 616 (1973).

    Google Scholar 

  19. J. Hilsenrath, C. W. Beckett, W. S. Benedict, L. Fano, H. J. Hoge, J. F. Masi, R. L. Nuttall, and Y. S. Touloukian,Table of Thermodynamic and Transport Properties, Pergamon Press, New York (1960).

    Google Scholar 

  20. “Thermodynamic and Transport properties of Argon, Nitrogen, and Oxygen at atmospheric pressure over the temperature range 300–20000 K,” Internal Report, Department de Genie Chimique, Universite de Sherbrooke, Quebec, Canada (1984).

  21. H. Maecker, personal communication to E. Pfender.

  22. E. Pfender and Y. C. Lee, “Particle Dynamics and Particle Heat and Mass Transfer in Thermal Plasmas. Part I. The Motion of a Single Particle without Thermal Effects,”Plasma Chem. Plasma Process. 5, 211 (1985).

    Google Scholar 

  23. Xi Chen and E. Pfender, “Heat Transfer to a Single Particle Exposed to a Thermal Plasma,”Plasma Chem. Plasma Process. 2, 185 (1982).

    Google Scholar 

  24. E. Pfender, “Recent Results of Plasma-Wall Heat Transfer Studies in Highly Ionized, Dense Plasmas,”Jahb. Dtsch. Ges. Luft-Raumfahrt, 196 (1971).

  25. A. Kanzawa, “Distributions of Current Density and Heat Flux Around a Cylindrical Probe in an Atmospheric-Pressure Plasma,”Heat Transfer—Jpn. Res. 4, 37 (1975).

    Google Scholar 

  26. M. Suzuki and A. Kanzawa, “Boundary-Layer Charged-Particle Profiles in an Atmospheric-Pressure Plasma Flow,”AIAA J. 17, 1320 (1979).

    Google Scholar 

  27. M. Capitelli, F. Cramarossa, L. Triolo, and E. Molinari, “Decomposition of Al2O3 Particles Injected into Argon-Nitrogen Induction Plasmas of 1 Atmosphere,”Combust. Flame 15, 23 (1970).

    Google Scholar 

  28. G. D. Raithby and E. R. G. Eckert, “The Effect of Turbulence Parameters and Support position on the Heat Transfer from Spheres,”J. Heat Mass Transfer 11, 1233 (1968).

    Google Scholar 

  29. G. R. Chludzinski, R. H. Kadlec, and S. W. Churchill, “Energy Transfer to Probes in Argon-Nitrogen Plasmas,” A.I.Ch.E.-I. Chem. E. Symposium Series No. 2, Chemical Engineering under Extreme Conditions, Inst. Chem. Eng., London (1965), pp. 93–98.

    Google Scholar 

  30. A. Kanzawa, “Plasma Heat Transfer Experiments Using a Thermocouple,”Heat Transfer—Jpn. Res. 2, 63 (1973).

    Google Scholar 

  31. A. Kanzawa, “Estimation of Temperature of Plasma Flow Using a Thermocouple,”Heat Transfer—Jpn. Res. 3, 15 (1974).

    Google Scholar 

  32. T. W. Petrie and E. Pfender, “A Sweeping Wire Probe for the study of Local Heat Transfer in Plasmas,” inProgress in Heat and Mass Transfer, T. F. Irvine, J. P. Hartnett, W. E. Ibele, and R. J. Goldstein, eds., Pergamon Press, Oxford (1969), Vol. 2.

    Google Scholar 

  33. T. W. Petrie and E. Pfender, “The Influence of the Cathode Tip on Temperature and Velocity Fields in a Gas-Tungsten Arc,”Weld. Res. Suppl. Dec. 1970, pp. 588s–596s.

  34. T. W. Petrie, “The Effect of Ionization on Heat Transfer to Wires Immersed in an Argon Plasma,” Ph.D. Thesis, University of Minnesota (1969).

  35. T. N. Meyer, “Effects of Applied Voltage and Surface Chemistry on the Heat Flux to a Probe Immersed in an Arc Plasma,” Ph.D. Thesis, University of Minnesota (1971).

  36. S. A. Wutzke, C. J. Cremers, and E. R. G. Eckert, “The Thermal Analysis of Anode and Cathode Regimes in an Electric Arc Column,” University of Minnesota Heat Transfer Laboratory Report HTL TR No. 56, August 1963.

  37. P. A. Schoeck, “An Investigation of the Energy Transfer to the Anode of High-Intensity Arcs in Argon,” Ph.D. Thesis, University of Minnesota (1961).

  38. K. C. Hsu and E. Pfender, “Modeling of a Free-Burning, High-Intensity Arc at Elevated Pressures,”Plasma Chem. Plasma Process. 4, 219 (1984).

    Google Scholar 

  39. K. C. Hsu, K. Etemadi, and E. Pfender, “Study of the Free-Burning High-Intensity Argon Arc,”J. Appl. Phys. 54, 1293 (1983).

    Google Scholar 

  40. W. H. McAdams,Heat Transmission, 2nd edn., McGraw-Hill, New York, (1942), pp. 220–222.

    Google Scholar 

  41. N. N. Sayegh and W. H. Gauvin, “Heat Transfer to Wires and Cylinders in High-Temperature Surroundings,”Can. J. Chem. Engi. 59, 241 (1981).

    Google Scholar 

  42. W. Rother, V. Smoljakov, and K. H. Weiss, “Konvektive Waermeuebertragung in einem laminaren Stickstoff-Plasmastrahl I,”Beitr. Plasmaphys. 8 145 (1968).

    Google Scholar 

  43. W. Rother, “Konvektive Waermeuebertragung in einem laminaren Stickstoff-Plasmastrahl II,”Beitr. Plasmaphys. 8 157 (1968).

    Google Scholar 

  44. C. Borgianni, M. Capitelli, F. Cramarossa, L. Triolo, and E. Molinari, “The Behavior of Metal Oxides Injected into an Argon Induction Plasma,”Combust. Flame 13, 181 (1969).

    Google Scholar 

  45. P. D. Johnston, “The Rate of Decomposition of Silica Particles in an Augmented Flame,”Combust. Flame 18, 373 (1972).

    Google Scholar 

  46. W. M. Kays and M. E. Crawford,Convective Heat and Mass Transfer, 2nd edition, McGraw-Hill, New York (1980), pp. 137–138.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Young, R.M., Pfender, E. Nusselt number correlations for heat transfer to small spheres in thermal plasma flows. Plasma Chem Plasma Process 7, 211–229 (1987). https://doi.org/10.1007/BF01019179

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01019179

Key Words

Navigation