Skip to main content
Log in

The efficacy of heating low-pressure H2 in a microwave discharge

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The relative ease with which a low-pressure hydrogen stream may be heated in an electrical discharge suggests that such a system be considered in current efforts to develop thrusters for spacecraft orbit raising purposes. In this work a detailed model of a microwave discharge in flowing, low-pressure hydrogen is used to interpret and clarify experimental measurements of atom concentration, electron energy, and electron density. The radially averaged, constant-pressure model accurately reproduces the experimental data and also calculated the rates of a number of gas-heating and wall-heating processes as well as rates of energy deposition into coolant and working fluid streams. The calculated gas-heating rates indicate that the gas heating is due primarily to the thermalization of the energetic atoms produced by dissociation of H2 via excitation of theb 3 + u state. The calculations also indicate that the energy flux to the quartz tube is significantly influenced by Lyman and Werner band radiation and by heterogeneous atomic recombination processes and, to a much lesser degree, by electron-ion recombination processes. The fraction of power input which is ultimately transferred to the gas stream is a decreasing function of the power input and varies from 0.24 to 0.12.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

tube cross-sectional area, m2

C :

molar concentration, g-mol·m−3

D :

diffusion coefficient, m2·s−1

e 0 :

energy of formation of H atoms, J·g-mol−1

f(j):

fractional population of vibrational levelj

F :

molar feed rate, g-mol·s−1

h :

enthalpy, J·kg−1; heat transfer coefficient, J·m−2·s−1·K−1

J :

generalized flux

k :

Boltzmann's constant, 1.3806×10−23 J·K−1; thermal conductivity, J·s−1·K−1

k i :

ionization rate constant, s−1

k d,j :

dissociation rate constant, m3·s−1

k 21 :

recombination rate constant, m6·s−1·g-mol−2

k 22 :

recombination rate constant, m6·s−1·g-mol−2

L :

discharge length, m

m :

atomic mass, kg

M :

molar mass, kg·g-mol−1

N A :

6.022 (1023) g-mol−1

N :

molar flux, g-mol·m−2·s−1

P :

gas pressure, Pa

q :

energy flux, J·m−2·s−1

R :

molar production rate, g-mol·m−3·s−1; tube radius, m; gas constant, J·g-mol−1·K−1

r :

radial coordinate, m

S :

energy production rate, J·m−3·s−1

T :

temperature, K

v :

gas velocity, m·s−1

z :

axial coordinate, m

0:

feed or reference condition outside

1:

H2 inside radius of tube

2:

H2 outside radius of tube

e :

electron

i :

index inside

v:

vibrational

tr:

translational/rotational

j :

index

e :

coolant

w:

wall

max:

maximum

α:

proportionality of radial diffusion rate to ionization rate

γ:

heterogeneous recombination coefficient

ε:

emissivity of quartz; energy of level, J·g-mol−1

π:

3.14159...

σ:

Stefan-Boltzmann constant

References

  1. H. G. Poole,Proc. R. Soc. London 163, 404 (1937).

    Google Scholar 

  2. T. M. Shaw, “Studies of Microwave Gas Discharges: Production of Free Radicals in a Microwave Discharge,” General Electric Technical Information Report No. TIS R58ELM 115, General Electric Microwave Laboratory, Power Tube Division, Palo Alto, California, 1958.

    Google Scholar 

  3. A. M. Mearns and E. Ekinci,J. Microwave Power 12, 155 (1977).

    Google Scholar 

  4. H. Brunet, J. Rocca Serra, and M. Mabru,J. Phys. 42, 1525 (1981).

    Google Scholar 

  5. T. J. Morin, Ph.D. Thesis, Michigan State University (1985), pp. 103–111.

  6. R. Chapman, T. Morin, M. Finzel, and M. C. Hawley,J. Spacer. Rockets 22, 626 (1985).

    Google Scholar 

  7. T. J. Morin, Ph.D. Thesis, Michigan State University (1985) pp. 93–103.

  8. F. C. Fehsenfeld, K. M. Evenson, and H. P. Broida,Rev. Sci. Instrum. 36, 294 (1965).

    Google Scholar 

  9. A. Gelb and S. K. Kim,J. Chem. Phys. 55, 4935 (1971).

    Google Scholar 

  10. T. W. Shyn and W. E. Sharp,Phys. Rev. A 24, 1734 (1981).

    Google Scholar 

  11. G. J. Schulz,Phys. Rev. A 135, 988 (1964).

    Google Scholar 

  12. S. J. B. Corrigan,J. Chem. Phys. 43, 4381 (1965).

    Google Scholar 

  13. M. Cacciatore, M. Capitelli, and M. Dilonardo,Chem. Phys. 34, 193 (1978).

    Google Scholar 

  14. J. M. Ajello, S. K. Srivastava, and Yuk L. Yung,Phys. Rev. A 25, 2485 (1982).

    Google Scholar 

  15. D. Rapp and P. Englander-Golden,J. Chem. Phys. 43, 1464 (1965).

    Google Scholar 

  16. R. T. Brackmann, W. L. Fite, and R. H. Neynaber,Phys. Rev. 112, 1157 (1958).

    Google Scholar 

  17. W. L. Fite and R. T. Brackmann,Phys. Rev. 112, 1151 (1958).

    Google Scholar 

  18. W. L. Fite and R. T. Brackmann,Phys. Rev. 112, 1151 (1958).

    Google Scholar 

  19. M. M. Audibert, R. Vilaseca, J. Lukasik, and J. Ducuing,Chem. Phys. Lett. 31, 232 (1975).

    Google Scholar 

  20. R. Heidner and J. Kaspar,Chem. Phys. Lett. 15, 179 (1972).

    Google Scholar 

  21. P. A. Whitlock, J. T. Muckerman, and R. E. Roberts,J. Chem. Phys. 60, 3658 (1974).

    Google Scholar 

  22. R. J. Spindler, Jr.,J. Quant. Spectrosc. Radiat. Transfer 9, 597 (1969).

    Google Scholar 

  23. Stwalley,Chem. Phys. Lett. 6, 241 (1970);J. Chem. Phys. 63, 3062 (1975).

    Google Scholar 

  24. A. M. Mearns, private communication.

  25. C. E. Hawkins and S. Nakanishi, “Free Radical Propulsion Concept,” NASA Technical Memorandum 81770, Lewis Research Center, Cleveland, Ohio (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morin, T.J., Hawley, M.C. The efficacy of heating low-pressure H2 in a microwave discharge. Plasma Chem Plasma Process 7, 181–199 (1987). https://doi.org/10.1007/BF01019177

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01019177

Key Words

Navigation