Advertisement

Theoretical and Mathematical Physics

, Volume 99, Issue 1, pp 422–436 | Cite as

Classical dynamics of a system ofn color charges

  • L. M. Chechin
Article

Abstract

The classical problem of the motion of a system ofN color (chromoelectric) charges in a self-consistent Yang—Mills field is studied. The potentials of the field and the corresponding equations of motion are found by successive approximation. An application of the obtained equations to the investigation of the dynamical properties of the meson as a system consisting of two color charges is given.

Keywords

Color Dynamical Property Classical Problem Successive Approximation Classical Dynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Bohr,The Penetration of Atomic Particles through Matter, Hafner Pub. Co. (1948).Google Scholar
  2. 2.
    S. K. Wong,Nuovo Cimento A,65, 689 (1979).Google Scholar
  3. 3.
    J. Schechter,Phys. Rev. D,14, 524 (1976).Google Scholar
  4. 4.
    L. S. Brown and W. I. Weisberger,Nucl. Phys. B,157, 285 (1979).Google Scholar
  5. 5.
    A. I. Alekseev,Teor. Mat. Fiz.,77, 389 (1988).Google Scholar
  6. 6.
    M. Carmeli, Kh. Huleihil, and E. Leibowitz,Gauge Fields. Classification and Equations of Motion, Singapore (1989).Google Scholar
  7. 7.
    W. Drechsler and A. Rozenblum,Phys. Lett.,106, 81 (1981).Google Scholar
  8. 8.
    L. Infeld and J. Plebánski,Motion and Relativity, Oxford (1960).Google Scholar
  9. 9.
    B. P. Kosyakov,Teor. Mat. Fiz.,87, 422 (1991).Google Scholar
  10. 10.
    V. V. Goloviznin, S. V. Molodtsov, and A. M. Snigirev,Yad. Fiz.,55, 2012 (1992).Google Scholar
  11. 11.
    A. P. Ryabushko,Izv. Vyssh. Uchebn. Zaved. Fiz., No. 6, 3 (1961).Google Scholar
  12. 12.
    J. Mathews and R. L. Walker,Mathematical Methods of Physics, Second Edition, Benjamin, New York (1970).Google Scholar
  13. 13.
    V. N. Strel'tsov,Fiz. Elem. Chastits At. Yadra,22, 1129 (1991).Google Scholar
  14. 14.
    Yu. M. Simonov,Yad. Fiz.,54, 192 (1991).Google Scholar
  15. 15.
    G. Morpurgo,Physics (Long Island City, N. Y.)2, 95 (1965).Google Scholar
  16. 16.
    B. P. Kosyakov,Usp. Fiz. Nauk,62, 161 (1992).Google Scholar
  17. 17.
    J. J. Kokkedee,The Quark Model, New York (1969).Google Scholar
  18. 18.
    I. V. Andreev,Chromodynamics and Hard Processes at High Energies [in Russian], Nauka, Moscow (1981).Google Scholar
  19. 19.
    R. L. Jaffe,Phys. Rev. Lett.,50, 228 (1983).Google Scholar
  20. 20.
    É. E. Sapershtein and V. E. Starodubskii,Fiz. Elem. Chastits At. Yadra,20, 293 (1989).Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • L. M. Chechin

There are no affiliations available

Personalised recommendations