Skip to main content
Log in

Classical gluon fields and collective dynamics of color-charge systems

  • Elementary Particles and Fields
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

An investigation of color fields that arise in collisions of relativistic heavy ions reveals that, in the non-Abelian case, a change in the color charge leads to the appearance of an extra term that generates a sizable contribution of color-charge glow in chromoelectric and chromomagnetic fields. The possibility of the appearance of a color echo in the scattering of composite color particles belonging to the dipole type is discussed. Arguments are adduced in support of the statement that such effects are of importance in simulating the first stage of ultrarelativistic heavy-ion collisions,where the initial parton state is determined by a high nonequilibrium parton density and by strong local color fluctuations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Peshier and W. Cassing, Phys. Rev. Lett. 94, 172301 (2005); M. Gyulassy and L.McLerran, Nucl. Phys. A 750, 30 (2005).

    Article  ADS  Google Scholar 

  2. F. Wang, arXiv: 1401.1758 [nucl-ex].

  3. V. Skokov, A. Y. Illarionov, and V. D. Toneev, Int. J. Mod. Phys. A 24, 5925 (2009); V. Voronyuk, V. D. Toneev, W. Cassing, et al., Phys. Rev. C 83, 054911 (2011).

    Article  ADS  Google Scholar 

  4. K. Fukushima, D. E. Kharzeev, and H. J. Warringa, Phys. Rev. D 78, 074033 (2008).

    Article  ADS  Google Scholar 

  5. D. E. Kharzeev, K. Landsteiner, A. Schmidt, and Ho-Ung Yee, arXiv:1211.6245 [hep-ph].

  6. ALICE Collab. ( B. Abelev et al.), Phys. Rev. Lett. 110, 012301 (2013).

    Article  ADS  Google Scholar 

  7. S. A. Voloshin, arXiv:1211.5680 [nucl-ex].

  8. T. Epelbaum and F. Gelis, arXiv:1307.1765 [hepph]; J. Berges, K. Boguslavski, S. Schlihting, and R. Venugopalan, arXiv:1311.3005 [hep-ph].

  9. L. McLerran and R. Venugopalan, Phys. Rev. D 49, 2233 (1994); F. Gelis, E. Iancu, J. Jalilian-Marian, and R. Venugopalan, Annu. Rev. Nucl. Part. Sci. 60, 463 (2010); F. Gelis, Int. J. Mod. Phys. A 28, 1330001 (2013).

    Article  ADS  Google Scholar 

  10. E. A. Kuraev, L. N. Lipatov, and V. S. Fadin, Sov. Phys. JETP 45, 199 (1977); Ya. Ya. Balitsky and L. N. Lipatov, Sov. J. Nucl. Phys. 28, 822 (1978).

    ADS  MathSciNet  Google Scholar 

  11. A. Kovner, L. McLerran, and H. Weigert, Phys. Rev. D 52, 6231, 3809 (1995).

    Article  ADS  Google Scholar 

  12. I. Balitsky, Nucl. Phys. B 463, 99 (1996); Phys. Rev. D 60, 014020 (1999); Yu. V. Kovchegov, Phys. Rev. D 60, 034008 (1999).

    Article  ADS  Google Scholar 

  13. J. Jalilian-Marian, A. Kovner, and H. Weigert, Phys. Rev. D 59, 014015 (1998); hep-ph/9709432.

    Article  ADS  Google Scholar 

  14. E. Iancu, A. Leonidov, and L. McLerran, Phys. Lett. B 510, 133 (2001); Nucl. Phys. A 692, 583 (2001).

    Article  ADS  MATH  Google Scholar 

  15. T. Lappi and L. McLerran, Nucl. Phys. A 772, 200 (2006).

    Article  ADS  Google Scholar 

  16. B. G. Zakharov, JETP Lett. 63, 952 (1996); JETP Lett. 64, 781 (1996); JETP Lett. 65, 615 (1997); N. N. Nikolaev, W. Schäfer, B. G. Zakharov, and V. R. Zoller, JETP 97, 441 (2003); Phys. Atom. Nucl. 68, 661 (2005).

    Article  ADS  Google Scholar 

  17. B. Schenke, P. Tribedy, and R. Venugopalan, Phys. Rev. Lett. 108, 252301 (2012); Phys. Rev. C 86, 034908 (2013).

    Article  ADS  Google Scholar 

  18. J. L. Albacete, J. Phys. G 38, 124006 (2011).

    Article  ADS  Google Scholar 

  19. Ch. Gale, S. Jeon, B. Schenke, et al., Phys.Rev. Lett. 110, 012302 (2013); T. Epelbaum and F. Gelis, Phys. Rev. Lett. 111, 232301 (2013).

    Article  ADS  Google Scholar 

  20. I. N.Mishustin and J. T. Kapusta, Phys. Rev. Lett. 88, 112501 (2002); I. N. Mishustin and K. A. Lyakhov, Phys. Rev. C 76, 011603 (2007).

    Article  ADS  Google Scholar 

  21. Ya. P. Terletsky and Yu.P. Rybakov, Electrodynamics (Vysshaya Shkola, Moscow, 1990) [in Russian].

    Google Scholar 

  22. F. Rohrlich, Classical Charged Particles, 3rd ed. (World Scientific, Singapore, 2007).

    Book  MATH  Google Scholar 

  23. I. B. Khriplovich, Sov. Phys. JETP 47, 18 (1978).

    ADS  Google Scholar 

  24. V. V. Goloviznin, S. V.Molodtsov, and A. M. Snigirev, Phys. At. Nucl. 56, 782 (1993).

    Google Scholar 

  25. A. F. Matveev and S. V. Molodtsov, Differ. Uravn. 29, 1533 (1993).

    MathSciNet  Google Scholar 

  26. J. E. Mandula, Phys. Rev. D 14, 3497 (1976); Phys. Lett. B 67, 175 (1977); Phys. Lett. B 69, 495 (1977).

    Article  ADS  Google Scholar 

  27. S. K. Wong, Nuovo Cimento A 65, 689 (1970).

    Article  ADS  Google Scholar 

  28. L. E. Elsgoltz and S. B. Norkin, Introduction to the Theory and Application of Differential Equations with a Deviating Argument (Nauka, Moscow, 1971) [in Russian]; A. D. Myshkis, Linear Differential Equations with a Retarded Argument (Nauka, Moscow, 1972) [in Russian]; E. Pinney, Ordinary Difference-Differential Equations (Univ. of California Press, 1958; Inostr. Liter., Moscow, 1961); R. Bellman and K. L. Cooke, Differential-Difference Equations (Academic Press, New York, 1963; Inostr. Liter.,Moscow, 1967).

    Google Scholar 

  29. Y. V. Kovchegov and D. H. Rischke, Phys. Rev. C 56, 1084 (1997).

    Article  ADS  Google Scholar 

  30. A. H. Mueller, Nucl. Phys. B 415, 373 (1994); 437, 107 (1995); A. H. Mueller and B. Patel, Nucl. Phys. B 425, 471 (1994).

    Article  ADS  Google Scholar 

  31. S. V. Molodtsov, A. M. Snigirev, and G. M. Zinovjev, Phys. Lett. B 443, 387 (1998); Phys. Rev. C 59, 955 (1999).

    Article  ADS  Google Scholar 

  32. G. Z. Basseyan, S. G. Matinyan, and G. K. Savvidi, JETP Lett. 29, 587 (1979); S. G. Matinyan, G. K. Savvidi, and N. G. Ter-Aratyunyan-Savvidi, Sov. Phys. JETP 53, 421 (1981); JETP Lett. 34, 590 (1981); B. V. Medvedev, Theor. Math. Phys. 60, 782 (1984); Theor. Math. Phys. 79, 618 (1989); Theor. Math. Phys. 109, 1565 (1996); Theor. Math. Phys. 122, 269 (2000); A. G. Lavkin, Sov. J. Nucl. Phys. 53, 198 (1991); Sov. J. Nucl. Phys. 53, 377 (1991); Sov. J. Nucl. Phys. 53, 1055 (1991); Phys. At. Nucl. 55, 124 (1992); Phys. At. Nucl. 55, 1422 (1992).

    ADS  Google Scholar 

  33. R. J. Fries, B. Müller, and A. Schäfer, Phys. Rev. C 79, 034904 (2009); T. Kunihiro, B. Müller, A. Ohnishi, et al., Phys. Rev. D 82, 114015 (2010).

    Article  ADS  Google Scholar 

  34. V. E. Fortov, A. V. Ivlev, S. A. Khrapak, et al., Phys. Rep. 421, 1 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  35. A. V. Filippov, A. G. Zagorodnii, A. I. Momot, et al., JETP 104, 147 (2007).

    Article  ADS  Google Scholar 

  36. G. M. Zinoviev and S. V. Molodtsov, Theor. Math. Phys. 146, 221 (2006); Phys. At. Nucl. 70, 1136 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. D. Toneev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voronyuk, V., Goloviznin, V.V., Zinovjev, G.M. et al. Classical gluon fields and collective dynamics of color-charge systems. Phys. Atom. Nuclei 78, 312–336 (2015). https://doi.org/10.1134/S1063778815010202

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778815010202

Keywords

Navigation