Skip to main content
Log in

On the modulation of electron energy distribution function in radiofrequency SiH4, SiH4−H2 bulk plasmas

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Electron energy distribution functions (EDF) in SiH4, SiH4−H2 radiofrequency discharges have been calculated by solving the time-dependent Boltzmann equation in the presence of a sinusoidal field. Particular emphasis is given to the modulation of EDF as a function of the applied frequency (π·106≤ω/p 0 ≤π·108 sec−1 torr−1) and of gas composition. The results show that at ω/p 0 = π·106 sec−1 torr−1 EDF follows in a quasistationary mode the variation of the field with the exception of a small range of electric field near to the zero crossing. Still, at the higher considered frequency (ω/p 0 =π·108 sec−1 torr−1), we observe some modulation of EDF. The necessity of using a time-dependent approach is tested by comparing the present results with the corresponding ones obtained by using the effective field approximation (i.e., the approximation which solves instead of the time-dependent Boltzmann equation the corresponding stationary one at the effective values\(E = E_o /\sqrt 2\) of the rf field). The two sets of results can differ by orders of magnitude in the tail of EDF, the differences decreasing with increasing molar fraction of H2 and increasing field frequency. The role of excited states (second-kind collisions) is studied by inserting in the Boltzmann equation given concentrations of vibrational and electronic states. The results show that second-kind collisions strongly affect EDF especially in pure silane. Finally a satisfactory agreement has been found between theoretical and experimental results concerning the modulation of electrons of given energy in pure silane discharges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. L. Rogoff, J. M. Kramer, and R. B. Piejack,IEEE Trans. Plasma Sci. PS-14, 103 (1986).

    Google Scholar 

  2. M. S. Barnes, T. J. Colter, and M. E. Elta,J. Appl. Phys. 61, 81 (1987).

    Google Scholar 

  3. W. D. Partlow and L. E. Kline,Mater. Res. Soc. Symp. Proc. 68, 309 (1986).

    Google Scholar 

  4. H. M. Anderson, J. A. Merson, and R. W. Light,IEEE Trans. Plasma Sci. PS-14, 156 (1986).

    Google Scholar 

  5. M. J. Kushner,Mater. Res. Soc. Symp. Proc. 68, 293 (1986).

    Google Scholar 

  6. R. Winkler, J. Wilhelm, and A. Hess,Ann. Phys. 42, 537 (1985).

    Google Scholar 

  7. R. Winkler, M. Capitelli, M. Dilonardo, C. Gorse, and J. Wilhelm,Plasma Chem. Plasma Process. 6, 436 (1986).

    Google Scholar 

  8. M. Dilonardo, M. Capitelli, R. Winkler, and J. Wilhelm,Mater. Res. Soc. Symp. Proc. 68, 287 (1986); R. Winkler, M. Dilonardo, M. Capitelli, and J. Wilhelm,Plasma Chem. Plasma Process. 7, 125 (1987).

    Google Scholar 

  9. M. R. Wertheimer and M. Moisan,J. Vac. Sci. Technol. A3, 2463 (1985); R. Claude, M. Moisan, M. R. Wertheimer, and Z. Zakrewski,Appl. Phys. Lett. 50, 1797 (1987).

    Google Scholar 

  10. H. Chatham and G. Gallagher,J. Appl. Phys. 58, 159 (1985).

    Google Scholar 

  11. H. Tagashira, K. Kitamori, M. Shimozuma, and Y. Saki, 7th International Symposium on Plasma Chemistry, Eindhoven, 1985, p. 1337.

  12. M. J. Kushner,IEEE Trans. Plasma Sci. PS-14, 188 (1986).

    Google Scholar 

  13. A. Garscadden, G. L. Ducke, and W. F. Bailey,Appl. Phys. Lett. 43, 1012 (1983).

    Google Scholar 

  14. A. A. Deryagin, I. V. Kochetov, C. V. Malinovskaia, and D. I. Slovetskij,High. Temp. 44, 346 (1985).

    Google Scholar 

  15. Y. Ohmori, M. Shimozuma, and G. Tagashira,J. Phys. D: Appl. Phys. 19, 1029 (1986).

    Google Scholar 

  16. G. de Rosny, E. R. Moshurg, J. R. Abelson, G. Devand, and R. C. Kerma,J. Appl. Phys. 54, 2272 (1983).

    Google Scholar 

  17. G. Turban, J. Catherine, and G. Grolleau,Plasma Chem. Plasma Proc. 2, 61 (1982).

    Google Scholar 

  18. M. Capitelli and M. Dilonardo,Z. Naturforsch. Teil A 34, 585 (1979).

    Google Scholar 

  19. H. Curtins, N. Wyrsch, M. Favre, and A. V. Shah,Plasma Chem. Plasma Process. 7, 267 (1987).

    Google Scholar 

  20. R. Winkler, M. Capitelli, C. Gorse, and J. Wilhelm, work in progress.

  21. J. C. Knights, J. P. M. Schmitt, J. Perrin, and G. Guelachvili,J. Chem. Phys. 76, 3414 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capitelli, M., Gorse, C., Winkler, R. et al. On the modulation of electron energy distribution function in radiofrequency SiH4, SiH4−H2 bulk plasmas. Plasma Chem Plasma Process 8, 399–424 (1988). https://doi.org/10.1007/BF01016057

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01016057

Key Words

Navigation