Skip to main content
Log in

A statistical analysis of polysilicon etching in a chlorine-argon plasma

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The effects of base pressure, etch pressure, gas flow rates of HCl, Cl2, and argon, hexode temperature, DC self-bias, initial polysilicon thickness, and percent of overetch on the etch performance of polysilicon are examined. Statistical design of the experiments provided linear and quadratic models of the etch performance in terms of the aforementioned variables. These models were used to determine the relative importance of each process variable on the etch performance. Optical emission data were utilized as a means of endpoint detection and as a monitor of etch activity. The results indicate that the etch performance is more responsive to variations in physical mechanisms as opposed to chemical processes within the variable ranges used in these experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. A. Mucha and D. W. Hess, in “Plasma Etching,”Introduction to Microlithography, L. F. Thompson, C. G. Willson and M. J. Bowden, eds., American Chemical Society, Washington D.C. (1983).

    Google Scholar 

  2. D. L. Flamm and V. M. Donnelly,Plasma Chem. Plasma Process. 1, 317 (1981).

    Google Scholar 

  3. H. J. Levinstein and C. J. Mogab,J. Vac. Sci. Technol. 17, 721 (1980).

    Google Scholar 

  4. Strategy of Experimentation, E. I. du Pont de Nemours & Co., Inc., Wilmington, Delaware (1975).

  5. B. E. Thompson and H. H. Sawin,J. Electrochem. Soc. 133, 1887 (1986).

    Google Scholar 

  6. K. D. Allen, H. H. Sawin, M. T. Mocella, and M. W. Jenkins,J. Electrochem. Soc. 133, 2315 (1986).

    Google Scholar 

  7. H. H. Sawin, B. E. Thompson, and A. D. Richards,Proceedings of the Fifth Symposium on Plasma Processing, Vol. 85-1, G. S. Mathad, G. C. Schwartz, and G. Smolinsky, eds., Electrochemical Society (1985), pp. 534–544.

    Google Scholar 

  8. A. J. van Roosmalen, A. P. M. van Arendonk, and H. T. Arends,Proceedings of the Fifth Symposium on Plasma Processing, Vol. 85-1, G. S. Mathad, G. C. Schwartz, and G. Smolinsky, eds., Electrochemical Society (1985), pp. 527–533.

    Google Scholar 

  9. R. H. Bruce,Solid State Technol. 24, 64 (1981).

    Google Scholar 

  10. P. A. Heimann and R. J. Schutz,J. Electrochem. Soc. 131, 881 (1984).

    Google Scholar 

  11. D. Benzing, F. D. Egitto, D. N. Y. Wang, and D. Maydan,Solid State Technol. 24, 71 (1981).

    Google Scholar 

  12. E. Degenkolb, K. O. Park, J. B. Shorter, and M. Tabasky,J. Electrochem. Soc. 132, 2027 (1985).

    Google Scholar 

  13. J. A. Graham, unpublished results (1986).

  14. W. B. Pearse and A. G. Gaydon,The Identification of Molecular Spectra, Chapman and Hall, London (1965).

    Google Scholar 

  15. S. Bourcier,Tables De Constantes et Donnees Numeriques, Pergamon Press, New York (1970), pp. 357–358.

    Google Scholar 

  16. Optical Emission Spectral Lines For Process Control and Monitoring in Plasma Etching and Ion Milling Reference Guide, Xinix, Inc., Santa Clara, California (1986).

  17. L. A. Tully, unpublished results (1986).

  18. R. W. P. McWhirter, in “Spectral Intensities,”Plasma Diagnostic Techniques, R. H. Huddlestone and S. L. Leonard, eds., Academic Press, New York (1965) pp. 201–264.

    Google Scholar 

  19. A. I. Spiers, A. C. Sharp, D. Guite, and J. Congrave,Proceedings of the Fifth Symposium on Plasma Processing, Vol. 85-1, G. S. Mathad, G. C. Schwartz, and G. Smolinsky, eds., Electrochemical Society (1985), pp. 106–116.

    Google Scholar 

  20. L. M. Ephrath,J. Electrochem. Soc. 129, 62C (1982).

    Google Scholar 

  21. B. Chapman,Glow Discharge Processes, Wiley, New York (1980).

    Google Scholar 

  22. A. W. Kolfschoten, R. A. Haring, A. Haring, and A. E. de Vries,J. Appl. Phys. 55, 3813 (1984).

    Google Scholar 

  23. T. M. Mayer, R. A. Barker and L. J. Whitman,J. Vac. Sci. Technol. 18, 349 (1981).

    Google Scholar 

  24. V. M. Donnelly, D. L. Flamm, and R. H. Bruce,J. Appl. Phys. 58 2135 (1985).

    Google Scholar 

  25. J. P. Coughlin, Bulletin 542, U.S. Bureau of Mines (1954).

  26. W. R. Harshbarger, R. A. Porter, T. A. Miller, and P. Norton,Appl. Spectrosc. 31, 201 (1977).

    Google Scholar 

  27. G. E. P. Box, W. G. Hunter, and J. S. Hunter,Statistics for Experimenters, Wiley, New York (1978).

    Google Scholar 

  28. R. D. Snee,J. Qual. Technol. 5 (2) 67 (1973).

    Google Scholar 

  29. R. D. Snee,J. Qual. Technol. 5 (3), 109 (1973).

    Google Scholar 

  30. D. W. Marquardt,Technometrics 12, 591 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tully, L.A., Shohet, J.L., Graham, J.A. et al. A statistical analysis of polysilicon etching in a chlorine-argon plasma. Plasma Chem Plasma Process 8, 349–382 (1988). https://doi.org/10.1007/BF01016055

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01016055

Key Words

Navigation