Journal of Applied Electrochemistry

, Volume 18, Issue 6, pp 849–852 | Cite as

On the electrochemical behaviour of the anodic oxide film on tungsten in HCOOH and CH3COOH solutions

  • M. M. Hefny
  • A. S. Mogoda
  • G. A. El Mahdy
Papers

Abstract

The electrochemical behaviour of the anodic oxide film on tungsten during, or after, interruption of current flow was studied in HCOOH and CH3COOH solutions by galvanostatic and capacitance techniques. The results show the conditions under which enhancement of film growth occurs as revealed from its formation and dissolution characteristics. The results also show the possibility of the electrochemical oxidation of formic acid by the thick oxide film on tungsten. The importance of this electrocatalytic process is the occurrence of the oxidation process without appreciable oxygen evolution. The galvanostatic oxidation of tungsten in HCOOH as a reducing agent can be considered as a novel method for the preparation of a class of oxides; oxidation with simultaneous partial reduction.

Keywords

Tungsten Formic Acid Oxide Film Oxidation Process Electrochemical Behaviour 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    K. E. Heusler,Electrochim. Acta 28 (1983) 439.Google Scholar
  2. [2]
    T. C. Arnoldussen,J. Electrochem. Soc. 128 (1981) 117.Google Scholar
  3. [3]
    M. S. El-Basiouny, A. A. Hassan and M. M. Hefny,Corros. Sci. 20 (1980) 909.Google Scholar
  4. [4]
    M. M. Hefny, A. S. Mogoda and M. S. El-Basiouny,Corrosion 39 (1983) 266.Google Scholar
  5. [5]
    M. M. Hefny, A. G. Gad Allah and A. S. Mogoda,Ann. Chim. 77 (1987) 951Google Scholar
  6. [6]
    M. G. Segal and W. J. Williams,J. Chem. Soc. Faraday Trans. 1 82 (1986) 3245.Google Scholar
  7. [7]
    R. M. Sellers and W. J. Williams,Faraday Discuss. Chem. Soc. 77 (1986) 265.Google Scholar
  8. [8]
    R. A. White, J. O. M. Bockris and B. E. Conway (editors), ‘Modern Aspects of Electrochemmistry’ Plenum Press, London (1986) Vol. 18, p. 169.Google Scholar
  9. [9]
    L. D. Burke and D. P. Whelan,J. Electroanal. Chem. 135 (1982) 55.Google Scholar
  10. [10]
    P. Schlotter and L. Pickelmann,J. Electron. Matter. 11 (1982) 207.Google Scholar
  11. [11]
    M. S. El-Basiouny, A. M. El-Kot and M. M. Hefny,Br. Corros. J. 14 (1979) 51.Google Scholar
  12. [12]
    H. A. Johnson, T. Smith and G. R. Hill,Trans. Faraday Soc. 57 (1961) 2999.Google Scholar
  13. [13]
    M. M. Hefny, A. S. Mogoda and M. S. El-Basiouny,Br. Corros. J. 21 (1986) 109.Google Scholar
  14. [14]
    Th. Heumann and M. Stolica,Electrochim. Acta 16 (1971) 643.Google Scholar
  15. [15]
    J. T. Meyer,J. Electrochem. Soc. 131 (1984) 221C.Google Scholar
  16. [16]
    B. Reichmann and A. J. Bard,126 (1979) 583.Google Scholar
  17. [17]
    O. Bohnk, C. Bohnke, G. Robert and B. Carquille,Solid State Ionics 6 (1982) 121, 267.Google Scholar
  18. [18]
    A. Aladjem, D. G. Brandon and J. J. Yahalom,Electrochim. Acta 15 (1970) 663.Google Scholar
  19. [19]
    A. Di Paola, F. Di Quarto and C. Sunseri,Corros. Sci. 20 (1980) 1067, 1079.Google Scholar
  20. [20]
    J. W. Diggle, T. C. Dowine and C. W. Goulding,Electrochim. Acta 15 (1970) 1079.Google Scholar
  21. [21]
    L. D. Burke and M. B. C. Roche,J. Electroanal. Chem. 164 (1984) 315.Google Scholar

Copyright information

© Chapman and Hall Ltd 1988

Authors and Affiliations

  • M. M. Hefny
    • 1
  • A. S. Mogoda
    • 1
  • G. A. El Mahdy
    • 2
  1. 1.Department of Chemistry, Faculty of ScienceCairo UniversityGiza
  2. 2.Cairo University at Beni SuefEgypt

Personalised recommendations