Skip to main content
Log in

Plasma chemical synthesis. II. Effect of wall surface on the synthesis of ammonia

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The plasma synthesis of ammonia was stuided at pressures of 1–5 torr and flow rates of up to 200 torr cm3 min−1 using Pyrex and silver surfaces cooled to 77 K. The N conversion to ammonia was about 13% in experiments in which the afterglow was trapped on the Pyrex surface. By quenching the plasma rather than the afterglow, the percent N conversion could be doubled using the Pyrex surface and quadrupled using the silver surface. Increasing the hydrogen pressure and/or hydrogen discharge cleaning decreased the percent N conversion; nitrogen discharge conditioning had no significant effect. With increasing nitrogen flow rate the percent N conversion decreased linearly in the quenched plasma reaction on the silver surface, suggesting nitriding and reduction by hydrogen to form ammonia. The exponential decrease of the percent N conversion in the quenched afterglow reaction on the Pyrex surface is explained by the formation and/or dissociation of adsorbed N2 determining the ammonia yield at 77 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. S. Yin and M. Venugopalan,Plasma Chem. Plasma Process. 3, 343 (1983).

    Google Scholar 

  2. G. Y. Botchway and M. Venugopalan,Z. Phys. Chem. Neue Folge 120, 103 (1980).

    Google Scholar 

  3. J. Kalman, T. A. Varga, and R. Hajos,Proc. Sixth Int. Symp. Plasma Chem., Montreal, 1983, p. 686.

  4. M. Venugopalan and S. Veprek, inPlasma Chemistry IV (Topics in Current Chemistry, No. 107), Springer-Verlag, Berlin (1983).

    Google Scholar 

  5. M. Venugopalan, G. Y. Botchway, and R. F. Suda,Proc. Fifth Int. Symp. Plasma Chem., Edinburgh, 1981, p. 694.

  6. K. Yin, R. F. Suda, G. Y. Botchway, and M. Venugopalan,Proc. Seventh Int. Symp. Plasma Chem., Eindhoven, 1985, p. 309.

  7. K. Sugiyama, K. Akazawa, M. Oshima, H. Miura, T. Matsuda, and D. Nomura,Plasma Chem. Plasma Process. 6, 179 (1986).

    Google Scholar 

  8. J. E. Nicholas, A. I. Spiers, and N. A. Martin,Plasma Chem. Plasma Process. 6, 39 (1986).

    Google Scholar 

  9. C. Braganza, S. Veprek, E. Wirz, H. Stuessi, and M. Textor,Proc. Fourth Int. Symp. Plasma Chem., Zurich, 1979, p. 100.

  10. M. Venugopalan and R. Avni, inThin Films from Free Atoms and Particles, K. J. Klabunde, ed., Academic Press, Orlando (1985), pp. 113–116.

    Google Scholar 

  11. F. Cramarossa, G. Ferraro, and E. Molinari,J. Quant. Spectrosc. Radiat. Transfer 14, 419 (1973).

    Google Scholar 

  12. R. d'Agostino, F. Cramarossa, S. de Benedictis, and G. Ferraro,Plasma Chem. Plasma Process. 1, 19 (1981).

    Google Scholar 

  13. D. Rapakoulias, J. Amouroux, M. P. Bergougnan, and A. Gicquel,Rev. Phys. Appl. 17, 95 (1982).

    Google Scholar 

  14. M. P. Bergougnan, A. Gicquel, and J. Amouroux,Rev. Phys. Appl. 18, 335 (1983).

    Google Scholar 

  15. A. Gicquel, M. P. Bergougnan, and J. Amouroux,Proc. Electrochem. Soc. 83 (10), 169 (1983).

    Google Scholar 

  16. J. Amouroux, A. Gicquel, S. Cavvadias, D. Morvan, and F. Arefi,Pure Appl. Chem. 57, 1210 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Touvelle, M., Licea, J.L.M. & Venugopalan, M. Plasma chemical synthesis. II. Effect of wall surface on the synthesis of ammonia. Plasma Chem Plasma Process 7, 101–108 (1987). https://doi.org/10.1007/BF01016001

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01016001

Key Words

Navigation