Skip to main content
Log in

Critical wetting in the square Ising model with a boundary field

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The Ising square lattice with nearest-neighbor exchangeJ>0 and a free surface at which a boundary magnetic fieldH 1 acts has a second-order wetting transition. We study the surface excess magnetization and the susceptibility ofL×M lattices by Monte Carlo simulation and probe the critical behavior of this wetting transition, applying finite-size scaling methods. For the cases studied, the results are not consistent with the presumably exactly known values of the critical exponents, because the asymptotic critical region has not yet been reached. Implication of our results for critical wetting in three dimensions and for the application of the present model to adsorbed wetting layers at surface steps are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. E. Sullivan and M. M. Telo da Gama, inFluid Interfacial Phenomena, C. A. Croxton, ed. (Wiley, New York 1986).

    Google Scholar 

  2. S. Dietrich, inPhase Transitions and Critical Phenomena, Vol. XII, C. Domb and J. L. Lebowitz, eds. (Academic, New York, 1988), p. 1.

    Google Scholar 

  3. E. H. Hauge, inFundamental Problems in Statistical Physics VI, E. G. D. Cohen (North-Holland, Amsterdam, 1985), p. 65.

    Google Scholar 

  4. W. Selke, D. A. Huse, and D. M. Kroll,J. Phys. A 17:3019 (1984).

    Google Scholar 

  5. P. G. de Gennes,Rev. Mod. Phys. 55:825 (1985); M. E. Fisher,J. Chem. Soc. Faraday Trans.282:1569 (1986);J. Stat. Phys. 34:667 (1984).

    Google Scholar 

  6. E. Brézin, B. I. Halperin, and R. K. P. Zia,Phys. Rev. Lett. 50:1387 (1983).

    Google Scholar 

  7. R. Lipowsky, D. M. Kroll, and R. K. P. Zia,Phys. Rev. B 27:4499 (1983).

    Google Scholar 

  8. D. S. Fisher and D. A. Huse,Phys. Rev. B 32:247 (1985).

    Google Scholar 

  9. K. Binder, D. P. Landau, and D. M. Kroll,Phys. Rev. Lett. 56:2276 (1986).

    Google Scholar 

  10. R. Lipowsky and M. E. Fisher,Phys. Rev. B 36:2126 (1987);Phys. Rev. Lett. 57:2411 (1986).

    Google Scholar 

  11. E. Brézin and T. Halpin-Healey,Phys. Rev. Lett. 58:1220 (1987).

    Google Scholar 

  12. E. Brézin and T. Halpin-Healey,J. Phys. (Paris)48:757 (1987).

    Google Scholar 

  13. K. Binder and D. P. Landau,Phys. Rev. B 37:1745 (1988).

    Google Scholar 

  14. D. M. Kroll,J. Appl. Phys. 61:3595 (1988); G. Gompper and D. M. Kroll,Phys. Rev. B 37:529 (1988).

    Google Scholar 

  15. K. Binder, D. P. Landau, and S. Wansleben,Phys. Rev. B 40:6971 (1989).

    Google Scholar 

  16. A. D. Parry and R. Evans,Phys. Rev. B 39:12336 (1989).

    Google Scholar 

  17. T. Halpin-Healey,Phys. Rev. B 40 (1989).

  18. D. B. Abraham,Phys. Rev. Lett. 44:1165 (1980).

    Google Scholar 

  19. D. B. Abraham, inPhase Transitions and Critical Phenomena, Vol. X, C. Domb and J. L. Lebowitz, eds. (Academic, New York, 1987), p. 1.

    Google Scholar 

  20. D. B. Abraham and D. A. Huse,Phys. Rev. B 38:7169 (1988).

    Google Scholar 

  21. D. B. Abraham and E. R. Smith,J. Stat. Phys. 43:621 (1986).

    Google Scholar 

  22. D. B. Abraham,J. Phys. A 21:1741 (1988).

    Google Scholar 

  23. S. T. Chui and J. D. Weeks,Phys. Rev. B 23:2438 (1981).

    Google Scholar 

  24. T. W. Burkhardt,J. Phys. A 14:L63 (1981).

    Google Scholar 

  25. D. M. Kroll,Z. Phys. B 41:345 (1981).

    Google Scholar 

  26. J. M. J. van Leeuwen and H. J. Hilhorst,Physica A 107:319 (1981).

    Google Scholar 

  27. V. Privman and N. M. Švrakic,Phys. Rev. B 37:3713 (1988).

    Google Scholar 

  28. D. M. Kroll and G. Gompper,Phys. Rev. B 39:433 (1989).

    Google Scholar 

  29. K. Binder, inPhase Transitions and Critical Phenomena, Vol. VIII, C. Domb and J. L. Lebowitz, eds. (Academic, New York, 1983), p. 1.

    Google Scholar 

  30. K. Binder and J. S. Wang,J. Stat. Phys. 55:87 (1989).

    Google Scholar 

  31. K. Binder and D. P. Landau,Phys. Rev. B 30:1477 (1984).

    Google Scholar 

  32. D. W. Heermann and R. C. Desai,Computer Phys. Commun. 50:536 (1988); R. C. Desai, D. W. Heermann, and K. Binder,J. Stat. Phys. 53:795 (1988).

    Google Scholar 

  33. E. V. Albano, K. Binder, D. W. Heermann, and W. Paul,Z. Phys. B 77:445 (1989).

    Google Scholar 

  34. E. V. Albano, K. Binder, D. W. Heermann, and W. Paul,Surf. Sci. 223:151 (1989).

    Google Scholar 

  35. E. V. Albano, K. Binder, D. W. Heermann, and W. Paul,J. Chem. Phys. 91:3700 (1989).

    Google Scholar 

  36. M. E. Fisher and H. Nakanishi,J. Chem. Phys. 75:5857 (1981); H. Nakanishi and M. E. Fisher,J. Chem. Phys. 78:3279 (1983).

    Google Scholar 

  37. M. E. Fisher,J. Phys. Soc. Japan Suppl. 26:87 (1969); see also G. G. Cabrera, R. Jullien, E. Brézin, and J. Zinn-Justin,J. Phys. (Paris)47:1305 (1986).

    Google Scholar 

  38. R. Lipowsky,Phys. Rev. B 32:173 (1985).

    Google Scholar 

  39. J. S. Wang, K. Binder, and J. L. Lebowitz,J. Stat. Phys. 56:783 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Alexander von Humboldt-Fellow

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albano, E.V., Binder, K., Heermann, D.W. et al. Critical wetting in the square Ising model with a boundary field. J Stat Phys 61, 161–178 (1990). https://doi.org/10.1007/BF01013958

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01013958

Key words

Navigation