Skip to main content
Log in

The potentiality of EMMA-4, the analytical electron microscope, in histochemistry: a review

  • Review
  • Published:
The Histochemical Journal Aims and scope Submit manuscript

Synopsis

The principles of X-ray microanalysis are outlined and a description is given of the combined transmission electron microscope X-ray microanalyser, EMMA-4. The use of this technique is discussed in relation to existing histochemical methods for electron microscopy.

The use of light microscopical techniques are suggested for use in electron microscopy, thereby extending the potential number of reactions available, the final reaction product sires being localized by X-ray analysis. By the use of such analyses, quantitative data can also be obtained in relation to the formed reaction product and the exact composition of mixed precipitates can be determined.

A brief discussion is included concerning the types of specimen suitable for use in X-ray microanalysis, in particular the applicability of ultra-thin frozen sections for the localization of soluble tissue components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, C. W. M. (1959). A histochemical method for the simultaneous demonstration of normal and degenerating myelin.J. Path. Bact. 77, 648–50.

    Google Scholar 

  • Appleton, T. C. (1968). Ultrathin frozen sections for electron microscopy.Preliminary Report, L.K.B. Instruments Inc. Rockville, Md., U.S.A.

    Google Scholar 

  • Appleton, T. C. (1972). Dry ultrathin frozen sections for electron microscopy and X-ray microanalysis; the cryostat approach.Micron 3, 81–4.

    Google Scholar 

  • Anson, M. L. (1941). Sulfydryl groups of egg albumin.J. Gen. Physiol. 24, 399–421.

    Google Scholar 

  • Bal, A. K. (1972). Localization of cellulase in plant cells.Proc. 4th Int. Cong. Histochem., pp. 301–2.

  • Barka, T. &Anderson, P. J. (1963). In.Histochemistry. Theory, Practice and Bibliography. New York: Hoeber.

    Google Scholar 

  • Barrnett, R. J. (1953). The histochemical distribution of protein bound sulphydryl groups.J. Nat. Cancer Inst. 13, 905–27.

    Google Scholar 

  • Barrnett, R. J. &Palade, G. E. (1957). Histochemical demonstration of the sites of activity of dehydrogenase systems with the electron microscope.J. Biophys. Biochem. Cytol. 3, 577–88.

    Google Scholar 

  • Barrnett, R. J. &Seligman, A. M. (1952). Demonstration of protein bound sulphydryl and disulphide groups by two new histochemical methodsJ. Nat. Cancer Inst. 13, 215–16.

    Google Scholar 

  • Barrnett, R. J. &Seligman, A. M. (1954). Histochemical demonstration of sulphydryl and disulphide groups of protein.J. Nat. Cancer Inst. 14, 769–803.

    Google Scholar 

  • Bearden, J. A. (1967) X-ray wavelengths.Rev. Mod. Phys. 39, 86–123.

    Google Scholar 

  • Bernhard, W. &Leduc, E. H. (1967). Ultrathin frozen sections I. Methods and ultrastructural preservations.J. Cell Biol. 34, 757–72.

    Google Scholar 

  • Bernhard, W. &Virion, A. (1971). Improved techniques for the preparation of ultrathin frozen sections.J. Cell Biol. 49, 731–46.

    Google Scholar 

  • Brandes, D., Zetterquist, H. &Sheldon, H. (1956). Histochemical techniques for electron microscopy alkaline phosphatase.Nature, Lond. 177, 382.

    Google Scholar 

  • Burstone, M. S. (1962).Enzyme Histochemistry and its Application in the Study of Neoplasms. New York, Academic Press.

    Google Scholar 

  • Chance, B., &Williams, G. R. (1956). The respiratory chain oxidative phosphorylation.Advan. Enzymol. 17, 65–134.

    Google Scholar 

  • Christensen, A. K. (1967). A simple way to cut frozen thin sections of tissue at liquid nitrogen temperature.Anat. Rec. 157, 227.

    Google Scholar 

  • Christensen, A. K. (1971). Frozen thin sections of fresh tissue for electron microscopy, with a description of pancreas and liver.J. Cell biol. 51, 772–804.

    Google Scholar 

  • Cooke, C. J. &Duncumb, P. (1969). Performance analysis of a combined electron microscope and electron probe microanalyser, EMMA.Proc. 5th Int. Cong. X-ray Optics and Microanalysis (eds. G. Mollenstedt & K. H. Gaukler), pp. 245–7. Berlin: Springer-Verlag.

    Google Scholar 

  • Cooke, C. J. &Openshaw, I. K. (1970). Combined high resolution electron microscopy and X-ray microanalysis.28th Ann. Proc. EMSA. (ed. C. J. Arceneaux). Baton Rouge, La. U.S.A.: Claitors.

    Google Scholar 

  • Deimling, O. V. &Madreiter, H. (1972). Esterase II. A new method for the electron microscopical demonstration of a non-specific esterase in animal tissues.Histochemie 29, 83–96.

    Google Scholar 

  • England, J. M. &Miller, R. G. (1970). The statistical analysis of autoradiographs II. Theoretical aspects including methods for optimal allocation of measurement effort.J. Microscopy 92, 167–77.

    Google Scholar 

  • England, J. M. &Rodgers, A. W. (1970). The statistical analysis of autoradiographs I. Grain count distribution over uniformly labelled sources.J. Microscopy,92, 159–65.

    Google Scholar 

  • Gahan, P. B., Greenoak, G. C. &James, D. (1970). Preparation of ultrathin frozen sections of plant tissues for electron microscopy.Histochemie 24, 230–5.

    Google Scholar 

  • Goldfischer, S., Essner, E., &Novikoff, A. B. (1963). The localization of phosphatase activities at the level of ultrastructure.J. Histochem. Cytochem. 12, 72–95.

    Google Scholar 

  • Gomori, G. (1941). Distribution of acid phosphatase in the tissues under normal and under pathological conditions.Arch. Path. 32, 189–99.

    Google Scholar 

  • Gomori, G. (1950). An improved histochemical technic for acid phosphatase.Stain Tech. 25, 81–5.

    Google Scholar 

  • Hackenbrock, C. R. (1966). Ultrastructural bases for metabolically linked mechanical activity in mitochondria. I. Reversible ultrastructural changes with change in metabolic steady state in isolated liver mitochondria.J. Cell Biol. 30, 269–97.

    Google Scholar 

  • Hackenbrock, C. R. (1968). Ultrastructural bases for metabolically linked mechanical activity in mitochondria II. Electron transport linked ultrastructural transformations in mitochondria.J. Cell Biol. 37, 345–69.

    Google Scholar 

  • Hall, T. A. (1968). Some aspects of microprobe analysis of biological specimens. In:Quantitative Electron Probe Microanalysis (ed. K. F. J. Heinrich). National Bureau of Standards Special Publication 298, Washington, D.C., U.S.A., 269–99.

  • Hall, T. A. (1971). The microprobe assay of chemical elements. In:Physical Techniques in Biological Research (ed. G. Oster), 2nd Ed., Vol.IA, pp. 157–275. New York: Academic Press.

    Google Scholar 

  • Hall, T. A. (1972). X-ray microanalysis in biology: quantitation.Micron 3, 93–7.

    Google Scholar 

  • Hall, T. A. &Werba, P. (1968). The measurement of total mass per unit area and elemental weight fractions along line scans in thin specimens.Proc. 5th Int. Cong. on X-ray Optics and Microanalysis (eds. G. Mollenstedt and K. H. Gaukler), pp. 93–8, Berlin: Springer-Verlag.

    Google Scholar 

  • Hanker, J. S., Seamen, A. R., Weiss, L. P., Ueno, H., Bergman, R. A. &Seligman, A. M. (1964). Osmiophilic reagents: New cytochemical principle for light and electron microscopy.Science 146, 1039–43.

    Google Scholar 

  • Hanker, J. S., Kasler, F., Bloom, M. E., Copeland, J. S. &Seligman, A. M. (1967). Coordination polymers of osmium: The nature of Osmium Black.Science 154, 1750–2.

    Google Scholar 

  • Herman, L., Sato, T. &Weavers, B. A. (1971). An investigation of the pyroantimonate reaction for sodium localization using the analytical electron microscope, EMMA-4,29th. Ann. Proc. EMSA. (ed. C. J. Arceneaux). Baton, Rouge, La., U.S.A.: Claitors.

    Google Scholar 

  • Hodson, S., &Marshall, J. (1970a). Ultracryotomy: A technique for cutting ultrathin sections of unfixed frozen biological tissue for electron microscopy.J. Microscopy 91, 105–17.

    Google Scholar 

  • Hodson, S. &Marshall, J. (1970b). Tissue sodium and potassium: Direct detection in the electron microscope.Experentia 26, 1283–4.

    Google Scholar 

  • Holt, S. J. (1959). Factors governing the validity of staining methods for enzymes, and their bearing upon the Gomori acid phosphatase technique.Exp. Cell Res. Suppl.7, 1–27.

    Google Scholar 

  • Iglestas, J. R., Bernier, R. &Simard, R. (1971). Ultracryotomy: A routine procedure.J. Ultrastruct. Res. 36 271–89.

    Google Scholar 

  • Kalina, M., Weavers, B. A. &Pearse, A. G. E. (1971). Ultrastructural localisation of succinate dehydrogenase in mouse liver mitochondria, a cytochemical study.J. Histochem. Cytochem. 19, 124–30.

    Google Scholar 

  • Kerpel-Fronius, S. &Hajos, F. (1968). The use of ferricyanide for the light and electron microscopic demonstration of succinic dehydrogenase activity.Histochemie 14, 343–51.

    Google Scholar 

  • Knowles, J. C., Weavers, B. A. &Cooper, E. H. (1972). Accumlation of calcium in the intramitochondrial dense bodies of mice.Exp. Cell Res. 73, 230–3.

    Google Scholar 

  • Komnick, H. &Komnick, U. (1963). Electronen Mikroskopische Untersuchungen zur funktionellen Morphologie des Ion transportes in der Salzdruese von Larus Argentatus.Z. Zellforsch.60, 163–70.

    Google Scholar 

  • Lacy, D. &Pettitt, A. J. (1972). Biological applications of combined transmission electron microscopy and X-ray microanalysis with special reference to studies on mammalian testis.Micron 3, 115–29.

    Google Scholar 

  • Landing, B. H., Uzman, L. L. &Whipple, A. (1952). Phosphomolybdic acid for staining reagent for lipid.Lab. Invest. I, 456–62.

    Google Scholar 

  • Olszewska, M. J., Wronski, M. &Fortak, W. (1967). A histochemical method for revealing disulphide bonds by means of hydrogen selenide.Folia. Histochem. Cytochem. 5, 7–14.

    Google Scholar 

  • Pearse, A. G. E. (1960).Histochemistry, Theoretical and Applied, 2nd Ed. London: Churchill.

    Google Scholar 

  • Pearse, A. G. E. (1968).Histochemistry; Theoretical and Applied 3rd Ed. Vol. I, London: Churchill.

    Google Scholar 

  • Persson, A. (1970). Cryo-ultramicrotomy.Proc. 7th Int. Cong. Electron Miscroscopy (ed. P. Favard), pp. 421–2. Société Français de Microscopie Electronique, Paris, France.

    Google Scholar 

  • Quintarelli, G., Scott, J. E. &Dellovo, M. C. (1964). The chemical and histochemical properties of Alcian Blue III. Chemical blocking and unblocking.Histochemie 4, 99–112.

    Google Scholar 

  • Russ, J. C. (1971). Spatial resolution of X-ray analysis with solid and thin specimens.29th Ann. Proc. EMSA, (ed. C. J. Arceneaux) Baton Rouge, La., U.S.A., Claitors.

    Google Scholar 

  • Scott, J. E. &Dorling, J. (1965). Differential staining of acid glycosaminoglycans (mucopolysaccharides) by Alcian Blue in salt solutions.Histochemie 5, 221–33.

    Google Scholar 

  • Seligman, A. M. (1964). Some recent trends and advances in enzyme histochemistry.Proc. 2nd Int. Cong. Histochem. and Cytochem.

  • Seligman, A. M., Hanker, J. S., Wasserkrug, H., Dmoshowski, H. &Katzoff, L. (1965). Histochemical demonstration of some oxidised macromolecules with thiocarbohydrazide. (TCH) or thiosemicarbazide (TSC) and osmium tetroxide.J. Histochem. Cytochem. 13 629–39.

    Google Scholar 

  • Seligman, A. M., Wasserkrug, H. L. &Hanker, J. S. (1966). A new staining procedure (OTO) for enhancing contrast of lipid containing membranes and droplets in osmium fixed tissues with osmiophilic thiocarbohydrazide (TCH).J. Cell Biol. 30, 424–32.

    Google Scholar 

  • Seligman, A. M., Wasserkrug, H. L., Deb, C. &Hanker, J. S. (1968). Osmium containing compounds with multiple basic or acidic groups as stains for ultrastructure.J. Histochem. Cytochem. 16, 87–101.

    Google Scholar 

  • Seveus, L. (1970). Frozen ultrathin sections.Proc. 7th Int. Cong. Electron Microscop. (ed. P. Favard), pp. 423–4. Société Français de Microscopie Electronique, Paris, France.

    Google Scholar 

  • Sheldon, H., Zetterquist, H. &Brandes, D. (1955). Histochemical reactios for electron microscopy: Acid phosphatase.Exp. Cell Res. 9, 592–6.

    Google Scholar 

  • Spicer, S. S., Hardin, J. H. &Greene, W. B. (1968). Nuclear precipitates in pyroantimonateosmium tetroxide fixed tissue.J. Cell Biol. 39, 216–21.

    Google Scholar 

  • Steedman, H. F. (1950). Alcian Blue 8GS: A new stain for mucin.Quat. F. Microscop. Sci. 91, 477–9.

    Google Scholar 

  • Swettenham, K. (1960). The buffered performic acid-Alcian Blue-periodic acid-Schiff method for differentiation of basophils in human and rat pituitary.J. Clin. Path. 13, 256–60.

    Google Scholar 

  • Tisher, C. C., Weavers, B. A. &Cirksena, W. J. (1972) X-ray microanalysis of pyroantimonate complexes in rat kidney.Amer. J. Path. 69, 255–66.

    Google Scholar 

  • Venkataraman, K. (1952).The Chemistry of Synthetic Dyes Vol. I. Academic Press.

  • Weavers, B. A. (1970). An electron microscopic study of cytoplasmic ultrastructure and cytochemistry in relation to function.Thesis for Fellowship of Institute of Science Technology, London.

  • Weavers, B. A. &Bal, A. K. (1972) Application of the analytical electron microscope EMMA-4 in evaluation of cellulase activity.30th Ann. Proc. EMSA (ed. C. J. Arceneaux). Baton Rouge, La., U.S.A., Claitors.

    Google Scholar 

  • Yao, T. (1949). Cytochemical studies on the embryonic development of drosophila melanogaster.Quat J. Microscop. Sci. 90, 401–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weavers, B.A. The potentiality of EMMA-4, the analytical electron microscope, in histochemistry: a review. Histochem J 5, 173–193 (1973). https://doi.org/10.1007/BF01012560

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01012560

Keywords

Navigation