Skip to main content
Log in

Scaling properties of ℤk- 1 actions on the circle

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We derive universal scaling properties for ℤk−1 actions on the circle whose generators have rotation numbers algebraic of degreek. As fork=2 these properties can be explained for arbitraryk in terms of a renormalization group transformation. It has at least one trivial fixed point corresponding to an action whose generators are pure rotations. The spectrum of the linearized transformation in this fixed point is analyzed completely. The fixed point is hyperbolic with a (k−1)-dimensional unstable manifold. In the casek=2 the known results are therefore recovered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Feigenbaum, L. Kadanoff, and S. Shenker, Quasiperiodicity in dissipative systems: a renormalization group analysis,Physica 5D:370–386 (1982).

    Google Scholar 

  2. S. Shenker, Scaling behaviour in a map of a circle into itself: Empirical results,Physica 5D:405–411 (1982).

    Google Scholar 

  3. S. Ostlund, D. Rand, J. Sethna, and E. Siggia, Universal properties of the transition from quasiperiodicity to chaos in dissipative systems,Physica 8D:303–342 (1983).

    Google Scholar 

  4. M. Feigenbaum, Quantitative universality for a class of nonlinear transformations,J. Stat. Phys. 19:25–52 (1978); The universal metric properties of nonlinear transformations,J. Stat. Phys. 21:669–706 (1979).

    Google Scholar 

  5. M. Herman, Sur la conjugaison differentiable des diffeomorphismes du cercle á des rotations,Publ. Math. IHES 49:5–233 (1979).

    Google Scholar 

  6. O. Lanford, private communication.

  7. L. Jonker and D. Rand, Universal properties of maps of the circle withα singularities,Commun. Math. Phys. 90:273–292 (1983).

    Google Scholar 

  8. O. Lanford, private communication.

  9. J. Yoccoz,C 1-conjugaison des diffeomorphismes du cercle, inGeometric Dynamics, J. Palis, ed.,Lect. N. Math. 1007:814–827 (Springer-Verlag, Berlin, 1983).

    Google Scholar 

  10. J. Cassels,An Introduction to Diophantine Approximations (Cambridge University Press, London, 1957), p. 104.

    Google Scholar 

  11. R. McKay and O. Lanford, private communications.

  12. S. Lang,Introduction to Diophantine Approximations (Addison-Wesley, Reading, Massachusetts 1966), p. 10.

    Google Scholar 

  13. A. Brentjes, Multidimensional continued fraction algorithms,Math. Centre Tracts 145 (Mathematisch Centrum, Amsterdam, (1981).

    Google Scholar 

  14. J. Lagarias, Some new results in simultaneous diophantine approximations, inProceedings of the Queen University Number Theory Conf, 1979, P. Ribenboim, ed.Queens Papers in Pure and Appl. Math. 54:453–474 (1980).

  15. E. Dubois and G. Rhin, Approximations simultanées de deux nombres réels, Seminaire Delange-Pisot-Poitou, 20e année 1978/79, Théorie des nombres, Fasc. 1, Exp. 9 (Secr. Math. Paris, (1980).

  16. G. Szegerez, Multidimensional continued fractions,Ann. Univ. Sci Budapest, Eötvös Sect. Math. 13:113–140 (1970).

    Google Scholar 

  17. C. Jacobi, Allgemeine Theorie der kettenbruchähnlichen Algorithmen, in welchen jede Zahl aus drei vorhergehenden gebildet wird,J. Reine Angew. Math. 69:29–64 (1869).

    Google Scholar 

  18. O. Perron, Grundlagen für eine Theorie des Jacobischen Kettenbruchalgorithmus,Math. Annalen 64:1–76 (1907).

    Google Scholar 

  19. L. Bernstein,The Jacobi-Perron Algorithm, Its Theory and Applications, Lect. N. Math. 207 (Springer-Verlag, Berlin, 1971).

    Google Scholar 

  20. N. Kopell, Commuting Diffeomorphisms, inGlobal Analysis, S. Chern and S. Smale, eds.Proc. Symp. Pure Math. XIV. Am. Math. Soc., Providence, Rhode Island (1970).

  21. F. Schweiger,The Metrical Theory of the Jacobi-Perron Algorithm, Lect. N. Math. 334 (Springer-Verlag, Berlin, 1973).

    Google Scholar 

  22. D. Mayer, Approach to equilibrium for locally expanding maps in ℝk,Commun. Math. Phys. 95:1–15 (1984).

    Google Scholar 

  23. E. Dubois and R. Le Roux, Dévelopment périodique par l'algorithme de Jacobi-Perron et nombre de Pisot-Vijayaraghavan,C.R. Acad. Sci. Paris 272A:649–652 (1971).

    Google Scholar 

  24. D. Mayer, Spectral properties of composition operators arising in statistical mechanics,Commun. Math. Phys. 68:1–8 (1979).

    Google Scholar 

  25. N. Manton and M. Nauenberg, Universal scaling behaviour for iterated maps in the complex plane,Commun. Math. Phys. 89:555–570 (1983).

    Google Scholar 

  26. M. Widom, Renormalization group analysis of quasiperiodicity in analytic maps,Commun. Math. Phys. 92:121–136 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mayer, D.H. Scaling properties of ℤk- 1 actions on the circle. J Stat Phys 38, 785–803 (1985). https://doi.org/10.1007/BF01010490

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01010490

Key words

Navigation