Skip to main content
Log in

A generalized Noether theorem for scaling symmetry

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The recently discovered conserved quantity associated with Kepler rescaling is generalized by an extension of Noether’s theorem which involves the classical action integral as an additional term. For a free particle, the familiar Schrödinger dilations are recovered. A general pattern arises for homogeneous potentials. The associated conserved quantity allows us to derive the virial theorem. The relation to the Bargmann framework is explained and illustrated by exact plane gravitational waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. (5.8) is only a pp wave, not a vacuum solution of the Einstein equations [6, 21].

References

  1. L. Landau, E. Lifchitz, Physique Théorique, Tome I: Mécanique, \(3^{e}\) édition edn. (Éditions MIR, Moscow, 1969)

  2. V. Arnold, Les méthodes mathématiques de la mécanique classique (Éditions MIR, Moscow, 1976)

    Google Scholar 

  3. P.-M. Zhang, M. Cariglia, M. Elbistan, G.W. Gibbons, P.A. Horvathy, “Kepler Harmonies” and conformal symmetries. Phys. Lett. B 792, 324 (2019). https://doi.org/10.1016/j.physletb.2019.03.057. [arXiv:1903.01436 [gr-qc]]

    Google Scholar 

  4. L.P. Eisenhart, Dynamical trajectories and geodesics. Ann. Math. 30, 591–606 (1928)

    Google Scholar 

  5. C. Duval, G. Burdet, H.P. Künzle, M. Perrin, Bargmann structures and Newton-Cartan theory. Phys. Rev. D 31, 1841 (1985)

    Google Scholar 

  6. C. Duval, G.W. Gibbons, P. Horvathy, Celestial mechanics, conformal structures and gravitational waves. Phys. Rev. D 43, 3907 (1991). [arXiv:hep-th/0512188]

    Google Scholar 

  7. P.-M. Zhang, M. Cariglia, M. Elbistan, P. A. Horvathy, Scaling and conformal symmetries for plane gravitational waves. [ arXiv:1905.08661 [gr-qc]]

  8. C. Duval, “Quelques procédures géométriques en dynamique des particules,” Doctorat d’Etat ès Sciences (Aix-Marseille-II), 1982 (unpublished). See also G. Burdet, C. Duval, M. Perrin, “Cartan Structures On Galilean Manifolds: The chrono-projective Geometry,” J. Math. Phys. 24, 1752 (1983). https://doi.org/10.1063/1.525927

  9. C.G.J. Jacobi, “Vorlesungen über Dynamik.” Univ. Königsberg 1842–1843. Herausg. A. Clebsch. Vierte Vorlesung: Das Princip der Erhaltung der lebendigen Kraft. Zweite ausg. C.G.J. Jacobi’s Gesammelte Werke. Supplementband. Herausg. E. Lottner. Berlin Reimer (1884)

  10. R. Jackiw, Introducing scaling symmetry. Phys. Today 25, 23 (1972)

    Google Scholar 

  11. U. Niederer, The maximal kinematical symmetry group of the free Schrödinger equation. Helv. Phys. Acta 45, 802 (1972)

    Google Scholar 

  12. C.R. Hagen, Scale and conformal transformations in Galilean-covariant field theory. Phys. Rev. D 5, 377 (1972)

    Google Scholar 

  13. M. Henkel, Local scale invariance and strongly anisotropic equilibrium critical systems. Phys. Rev. Lett. 78, 1940 (1997)

    Google Scholar 

  14. M. Henkel, Phenomenology of local scale invariance: from conformal invariance to dynamical scaling. Nucl. Phys. B 641, 405 (2002)

    Google Scholar 

  15. C. Duval, P.A. Horvathy, Non-relativistic conformal symmetries and Newton-Cartan structures. J. Phys. A 42, 465206 (2009). https://doi.org/10.1088/1751-8113/42/46/465206. [arXiv:0904.0531 [math-ph]]

    Google Scholar 

  16. V. de Alfaro, S. Fubini, G. Furlan, Conformal invariance in quantum mechanics. Nuovo Cim. A 34, 569 (1976). https://doi.org/10.1007/BF02785666

    Google Scholar 

  17. M. Cariglia, Null lifts and projective dynamics. Ann. Phys. 362, 642 (2015). https://doi.org/10.1016/j.aop.2015.09.002. [arXiv:1506.00714 [math-ph]]

    Google Scholar 

  18. M. Perrin, G. Burdet, C. Duval, chrono-projective Invariance of the five-dimensional Schrödinger formalism. Class. Quantum Gravity 3, 461 (1986). https://doi.org/10.1088/0264-9381/3/3/020

    Google Scholar 

  19. G.S. Hall, J.D. Steele, Conformal vector fields in general relativity. J. Math. Phys. 32, 1847 (1991). https://doi.org/10.1063/1.529249

    Google Scholar 

  20. G.S. Hall, Symmetries and Curvature Structure in General Relativity (World Scientific, Singapore, 2004)

    Google Scholar 

  21. M.W. Brinkmann, Einstein spaces which are mapped conformally on each other. Math. Ann. 94, 119–145 (1925)

    Google Scholar 

  22. M. Brdička, On gravitational waves. Proc. R. Irish Acad. 54A, 137 (1951)

    Google Scholar 

  23. C.G. Torre, Gravitational waves: just plane symmetry. Gen. Relativ. Gravit. 38, 653 (2006). https://doi.org/10.1007/s10714-006-0255-8. [arXiv:gr-qc/9907089]

    Google Scholar 

  24. K. Andrzejewski, S. Prencel, Memory effect, conformal symmetry and gravitational plane waves. Phys. Lett. B 782, 421 (2018). https://doi.org/10.1016/j.physletb.2018.05.072. [arXiv:1804.10979 [gr-qc]]

    Google Scholar 

  25. C. Duval, G.W. Gibbons, P.A. Horvathy, P.-M. Zhang, “Carroll symmetry of plane gravitational waves,” Class. Quantum Gravity 34 (2017). https://doi.org/10.1088/1361-6382/aa7f62. [arXiv:1702.08284 [gr-qc]]

  26. P.M. Zhang, C. Duval, G.W. Gibbons, P.A. Horvathy, Velocity memory effect for polarized gravitational waves. JCAP 1805(05), 030 (2018). https://doi.org/10.1088/1475-7516/2018/05/030. arXiv:1802.09061 [gr-qc]]

    Google Scholar 

  27. A. Ilderton, Screw-symmetric gravitational waves: a double copy of the vortex. Phys. Lett. B 782, 22 (2018). https://doi.org/10.1016/j.physletb.2018.04.069. [arXiv:1804.07290 [gr-qc]]

    Google Scholar 

  28. N. Dimakis, P.A. Terzis, T. Christodoulakis, Integrability of geodesic motions in curved manifolds through non-local conserved charges. Phys. Rev. D 99(10), 104061 (2019). https://doi.org/10.1103/PhysRevD.99.104061. [arXiv:1901.07187 [gr-qc]]

    Google Scholar 

  29. N.G. Van Kampen, Transformation groups and the virial theorem. Rep. Math. Phys. 3, 235 (1972)

    Google Scholar 

  30. B. Nachtergaele, A. Verbeure, Groups of canonical transformations and the virial-Noether theorem. J. Geom. Phys. 3, 315–325 (1986)

    Google Scholar 

  31. N. Ogawa, A Note on the scale symmetry and Noether current. hep-th/9807086

Download references

Acknowledgements

We are indebted to Gary Gibbons for advice and Bruno Nachtergaele for correspondence. ME thanks the Denis Poisson Institute of Orléans - Tours University for a post-doctoral scholarship. This work was partially supported by National Natural Science Foundation of China (Grant No. 11575254). P.K. was supported by the Grant 2016/23/B/ST2/00727 of the National Science Centre of Poland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Elbistan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, PM., Elbistan, M., Horvathy, P.A. et al. A generalized Noether theorem for scaling symmetry. Eur. Phys. J. Plus 135, 223 (2020). https://doi.org/10.1140/epjp/s13360-020-00247-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00247-5

Navigation