Skip to main content
Log in

A statistical mechanics view of quantum chromodynamics: Lattice gauge theory

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Recent developments in lattice gauge theory are discussed from a statistical mechanics viewpoint. The basic physics problems of quantum chromodynamics (QCD) are reviewed for an audience of critical phenomena theorists. The idea of local gauge symmetry and color, the connection between statistical mechanics and field theory, asymptotic freedom and the continuum limit of lattice gauge theories, and the order parameters (confinement and chiral symmetry) of QCD are reviewed. Then recent developments in the field are discussed. These include the proof of confinement in the lattice theory, numerical evidence for confinement in the continuum limit of lattice gauge theory, and perturbative improvement programs for lattice actions. Next, we turn to the new challenges facing the subject. These include the need for a better understanding of the lattice Dirac equation and recent progress in the development of numerical methods for fermions (the pseudofermion stochastic algorithm and the microcanonical, molecular dynamics equation of motion approach). Finally, some of the applications of lattice gauge theory to QCD spectrum calculations and the thermodynamics of. QCD will be discussed and a few remarks concerning future directions of the field will be made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. N. Yang and R. L. Mills,Phys. Rev. 96:1605 (1954).

    Google Scholar 

  2. A. M. Polyakov,Phys. Lett. B59:82 (1975).

    Google Scholar 

  3. A. M. Polyakov,Phys. Lett. B103:207 (1981).

    Google Scholar 

  4. K. G. Wilson,Phys. Rev. D 14:2455 (1974).

    Google Scholar 

  5. F. Wegner,J. Math. Phys. 12:2259 (1971).

    Google Scholar 

  6. A. Hasenfratz, E. Hasenfratz, and P. Hasenfratz,Nucl. Phys. B180:353 (1981); C. Itzykson, M. Peskin, and J.-B. Zuber,Phys. Lett. B95:259 (1980).

    Google Scholar 

  7. J. Kogut, R. Pearson, J. Richardson, J. Shigemitsu, and D. K. Sinclair,Phys. Rev. D 23:2945 (1981).

    Google Scholar 

  8. M. Lüscher,Nucl. Phys. B180:317 (1981).

    Google Scholar 

  9. A. Casher,Phys. Lett. B83:395 (1979).

    Google Scholar 

  10. E. Tomboulis, Princeton University preprint (1983).

  11. W. E. Caswell,Phys. Rev. Lett. 33:244 (1974). The original one-loop calculations were done by H. D. Politzer,Phys. Rev. Lett. 30:1346 (1973) and D. Gross and F. Wilczek,ibid. 30:1343 (1973).

    Google Scholar 

  12. K. Symanzik, inMathematical Problems in Theoretical Physics, R. Schroder, ed., Lecture Notes in Physics (Springer, Berlin), p. 153, 1982.

    Google Scholar 

  13. B. Berg, S. Meyer, I. Montvay, and K. Symanzik, DESY 83-015 preprint, April 1983.

  14. See, for example, G. Fox, R. Gupta, O. Martin, and S. Otto,Nucl. Phys. B205[FS5]:188 (1982).

    Google Scholar 

  15. S. H. Shenker and J. Tobohnik,Phys. Rev. B 22:4462 (1980).

    Google Scholar 

  16. J. Kogut and J. Shigemitsu,Nucl. Phys. B190[FS3]:365 (1981).

    Google Scholar 

  17. G. Parisi, R. Petronzio, and F. Rapuano, CERN preprint, Ref. TH.3596-CERN (1983).

  18. J. Kogut, R. Pearson, and J. Shigemitsu,Phys. Lett. B98:63 (1980).

    Google Scholar 

  19. G. Bhanot and M. Creutz,Phys. Rev. D 24:3212 (1981).

    Google Scholar 

  20. H. B. Nielsen and M. Ninomiya,Nucl. Phys. 185:20 (1981).

    Google Scholar 

  21. Lattice fermions are discussed in the review J. Kogut,Rev. Mod. Phys. 55:775 (1983).

    Google Scholar 

  22. F. Fucito, E. Marinari, G. Parisi, and C. Rebbi,Nucl. Phys. B180[FS2]:369 (1981).

    Google Scholar 

  23. J. Polonyi and H. W. Wyld,Phys. Rev. Lett. 51:2257 (1983).

    Google Scholar 

  24. H. Hamber and G. Parisi,Phys. Rev. Lett. 47:1792 (1981); D. Weingarten,Phys. Lett. B109:57 (1982).

    Google Scholar 

  25. J. Kogut, M. Stone, H. W. Wyld, S. H. Shenker, J. Shigemitsu, and D. K. Sinclair,Nucl. Phys. B225[FS9]:326 (1983).

    Google Scholar 

  26. T. Celik, J. Engels, and H. Satz, BI-TH 83/07 (1983); J. Kogut, H. Matsuoka, M. Stone, H. W. Wyld, S. H. Shenker, J. Shigemitsu, and D. K. Sinclair,Phys. Rev. Lett. 51:869 (1983).

  27. J. Kogut, H. Matsuoka, S. H. Shenker, J. Shigemitsu, D. K. Sinclair, M. Stone, and H. W. Wyld,Nucl. Phys. B225[FS9]:93 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by the NSF under grant No. PHY82-01948

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kogut, J.B. A statistical mechanics view of quantum chromodynamics: Lattice gauge theory. J Stat Phys 34, 941–961 (1984). https://doi.org/10.1007/BF01009450

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01009450

Key words

Navigation