Skip to main content
Log in

Resonance phenomena in the magnetized semiconductor plasma and their application for the design of the millimeter and submillimeter wave components

  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

Abstract

A review of physical principles of design as well as some ways of technical realization of controlled resonance semiconductor devices at millimeter and submillimeter wavelengths is presented. The operation of such devices is based on cyclotron and magnetoplasma resonances as well as on Fabry-Perot resonance. Such choice has been made due to the fact that these resonance phenomena are the most typical ones for the magnetized semiconductor plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.D.Palik, J.K.Furdyna, “Infrared and microwave magnetoplasma effects in semiconductors”, Rep. Prog. Phys.,33, 1193 (1970).

    Google Scholar 

  2. J.Požela, Plasma and current instabilities in semiconductors, — Pergamon Press (1981).

  3. A.J.Dinardo, Y.Klinger, F.R.Arams, “Passive nonreciprocal HF helicon devices”, IEEE trans.,EMC 10, 270 (1968).

    Google Scholar 

  4. R.B.Tolutis, “On the properties of semiconductor HF isolators on the basis of the size resonance effect of electromagnetic magnetoplasma waves”, Radiotek. i Elektron.,23, 607 (1978) (Engl. transl. Radio Eng. Electron. Phys.).

    Google Scholar 

  5. J.Gremillet, “Undirectional device having means for transmitting only one sense of a circulary polarized wave”, USA Patent No 3.286.203.

  6. R.E.Hayes, W.G.May, “The use of semiconductors in nonreciprocal devices for submillimeter wavelengths”, Proc. Symp. Submillimeter Waves, New York, Polytechnic Press, pp. 237–250 (1970).

    Google Scholar 

  7. H.J.Kuno, W.D.Hershberger, “Solid-state plasma controlled nonreciprocal microwave device”, IEEE trans.,MMT 15, 57 (1967).

    Google Scholar 

  8. H.J.Kuno, W.D.Hershberger, “Microwave Faraday effect and propagation in a circular solid-state plasma waveguide”, IEEE trans.,MTT 15, 661 (1967).

    Google Scholar 

  9. K.Suzuki, “Room temperature solid-state plasma nonreciprocal microwave devices”, IEEE trans.,ED 16, 1018 (1969).

    Google Scholar 

  10. K.Suzuki, R.Hirota, “Nonreciprocal millimeter-wave devices using a solid-state plasma at room temperature”, IEEE trans.,ED 18, 408 (1971).

    Google Scholar 

  11. A.Laurinavičius, J.Požela, “Investigation of microwave dispersion in n-InSb by magnetoreflection”, Phys. Stat. Sol. (a),21, 733 (1974).

    Google Scholar 

  12. V.K.Kanonenko, E.M.Kuleshov, “Nonreciprocal microwave propagation in n-InSb”, Radiotek. i Electron.,18, 1429 (1973). (Engl. transl.: Radio Eng. Electron. Phys.).

    Google Scholar 

  13. A.C.Baynham, A.D.Boardman, M.R.B.Dunsmore, “Radiation filters”, UK Patent No 1.237.708.

  14. A.Laurinavičius, P.Malakauskas, “Pecularities of electromagnetic wave propagation in a waveguide with gyromagnetic semiconductor wall”, Litovskii Fiz. Sbornik,22, No 3, 48 (1982) (Engl. transl.: Soviet Phys. — Collection).

    Google Scholar 

  15. J.Maurer, A.Libchaber, J.Bok, “tNonlinear effects associated with helicon wave propagation”, Proc. 7-th Internat. Conf. Phys. Semiconduct., (Plasma effects in solids), Dunod, Paris, pp. 49–52 (1964).

    Google Scholar 

  16. A.Laurinavičius, J.Požela, “Nonlinear effects in n-InSb associated with the propagation of high power microwave helicon”, Fiz. Tech. Poluprov.,7, 2036 (1973) (Engl. transl.: Soviet Phys.-Semicond.).

    Google Scholar 

  17. W.G.May, B.R.McLeod, “A waveguide isolator using InSb”, IEEE Trans.,MTT 16, 877 (1968).

    Google Scholar 

  18. B.R.McLeod, W.G.May, “A 35 GHz isolator using a coaxial solid state plasma in a longitudinal magnetic field”, IEEE trans.,MTT 19, 510 (1971).

    Google Scholar 

  19. M.Kanda, W.G.May, “A millimeter-wave isolator containing a semiconductor rod in a circular waveguide”, IEEE trans.,IM 24, 264 (1975).

    Google Scholar 

  20. M.Kanda, W.G.May, “New millimeter-wave isolator containing a semiconductor rod in a circular waveguide”, Electronics Letters,11, 261 (1975).

    Google Scholar 

  21. M.Kanda, W.G.May, “Hallow-cylinder waveguide isolators for use at millimeter wavelengths”, IEEE trans.,MTT 22, 913 (1974).

    Google Scholar 

  22. A.Laurinavičius, J.Požela, “Investigation of helicon waves from magnetoreflection in InSb samples at microwave frequencies”, Litovskii Fiz. Sbornik,11, 65 (1971) (Engl. transl.: Soviet Phys. — Collection).

    Google Scholar 

  23. V.K.Kononenko, E.M.Kuleshov, “Nonreciprocal semiconductor devices using the effect of magnetoplasma reflection minimum”, Radiotek. i Elektron.,25, 1717 (1980) (Engl. transl: Radio Eng. Electron. Phys.)

    Google Scholar 

  24. A.Laurinavičius, unpublished.

  25. V.K.Kononenko, E.M.Kuleshov, A.Laurinavičius, J.Požela, V.N.Polupanov, “Quasioptical attenuator”, USSR Patent No 657.486.

  26. A.Laurinavičius, “Semiconductor isolator for submillimeter waves”, Radiotek. i Elektron.,24, 1095 (1979). (Engl. transl.: Radio Eng. Electron. Phys.).

    Google Scholar 

  27. A.Laurinavičius, V.Balynas “Semiconductor isolator based on cyclotron resonance phenomenon”, Electronics Letters,15, 15 (1979).

    Google Scholar 

  28. P.L.Richards, G.E.Smith, “Far-infrared circular polarizer”, RSI,25, 1535 (1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laurinavičius, A. Resonance phenomena in the magnetized semiconductor plasma and their application for the design of the millimeter and submillimeter wave components. Int J Infrared Milli Waves 4, 163–184 (1983). https://doi.org/10.1007/BF01008601

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01008601

Key words

Navigation