Skip to main content
Log in

A Green's function solution to the image and multiple image interactions for hyperboloidal geometry: Application to metallic pointcontact infrared detectors

  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

Abstract

Using the Mehler-Fock transformation to solve Poisson's equation in prolate spheroidal coordinates, we have obtained an exact Green's function solution for all multiple image corrections to the vacuum tunneling barrier for a hyperboloidal tip-planar-anode model of a point-contact junction consisting of identical or dissimilar metals.

These calculations show that the image corrections significantly modify both the form and area of the barrier, producing an enhancement in the rectification and tunneling currents at low bias.

I–V characteristics have also been obtained for the hyperboloidal tip model using estimates of the emission and collection regions based on field emission experiments for whisker tips of comparable dimensions. These results are compared with earlier calculations which

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. J. E. Knight and P. T. Woods, “Application of Nonlinear Devices to Optical Frequency Measurements,” J. Phys. E: Scientific Instruments9, 898 (1976).

    Google Scholar 

  2. J. J. Jimenez and F. Russel Petersen, “Recent Progress in Laser Frequency Synthesis,” Infrared Physics17, 541 (1977).

    Google Scholar 

  3. J. J. Jimenez, “Microwave to Visible Frequency Synthesis,” Radio Science14, 541 (1979).

    Google Scholar 

  4. K. M. Evenson and F. R. Petersen, “Laser Frequency Measurements, The Speed of Light and the Meter,”Laser Spectroscopy of Atoms and Molecules ed. by H. Walther (Springer-Verlag, Berlin, 1976);

    Google Scholar 

  5. H. Hellweg, K. M. Evenson and D. J. Wineland, “Time Frequency and Physical Measurement,” Phys. Today31, 23 (1978).

    Google Scholar 

  6. L. O. Hocker, A. Javan, and D. R. Rao, L. Frenkel and T. Sullivan “Absolute Frequency Measurement and Spectroscopy of Gas Laser Transition in the Far Infrared,” Appl. Phys. Letts.10, 147 (1967).

    Google Scholar 

  7. L. O. Hocker and A. Javan, “Laser Harmonic Frequency Mixing of Two Different Far Infrared Laser Lines up to 118μ,” Phys. Letts.26A, 255 (1968).

    Google Scholar 

  8. L. O. Hocker, D. R. Sokoloff, V. Danau, A. Szoke, and A. Javan, “Frequency Mixing in the Infrared and the Far-Infrared Using a Metal-Metal Point-Contact Diode,” Appl. Phys. Letts.12, 401 (1968).

    Google Scholar 

  9. V. Danau, D. Sokoloff, A. Sanchez, and A. Javan, “Extension of Laser Harmonic-Frequency Mixing Techniques into the 9μ Region with an Infrared Metal-Metal Point-Contact Diode,” Appl. Phys. Letts.,15, 398 (1969).

    Google Scholar 

  10. D. R. Sokoloff, A. Sanchez, R. M. Osgood, and A. Javan, “Extension of Laser Harmonic-Frequency Mixing into the 5μ-Regions,” Appl. Phys. Letts.17, (1970).

  11. A. Sanchez, S. K. Singh, and A. Javan, “Generation of Infrared Radiation μ in Metal-to-Metal Point-Contact Diode at Synthesized Frequencies of Incident Field: A High Speed Broad-Band Light Modulator,” Appl. Phys. Letts. 240 (1972).

  12. G. M. Elchinger, A. Sanchez, C. F. Davis, and A. Javan, “Mechanism of Detection of Radiation in a High-Speed Metal-Metal Oxide-Metal Junction in the Visible Region and at Longer Wavelengths,” J. Appl. Phys.47, 591 (1976).

    Google Scholar 

  13. A. Sanchez, C. F. Davis, Jr., K. C. Liu, and A. Javan, “The MOM Tunneling Diode: Theoretical Estimate of its Performance at Microwave and Infrared Frequencies,” J. Appl. Phys.49, 5270 (1978).

    Google Scholar 

  14. C. C. Bradley and G. J. Edwards, “Characteristics of Metal-Insulator-Metal Point-Contact Diodes Used for Two-Laser Mixing and Direct Frequency Measurements,” IEEE J. Quant. Electronics,8, 557 (1972).

    Google Scholar 

  15. R. K. Abrams and W. B. Gandrud, “Heterodyne Detection of 10.6μ Radiation by Metal-to-Metal Point-Contact Diodes,” Appl. Phys. Letts.17, 150 (1970).

    Google Scholar 

  16. S. M. Faris, T. K. Gustafson, and I. C. Wiesner, “Detection of Optical and Infrared Radiation with dc-biased Electron-Tunneling Metal-Barrier-Metal Diodes,” IEEE J. Quantum Electronics QE-9, 737 (1973).

    Google Scholar 

  17. E. Sakuma and K. M. Evenson, “Characteristics of Tungsten-Nickel Point-Contact Diodes used as Laser Harmonic-Generator Mixers,” IEEE J. Quantum Electronics QE-10, 599 (1974).

    Google Scholar 

  18. B. L. Twu and S. E. Schwarz, “Properties of Infrared Cat-Whisker Antennas Near 10.6μ,” Appl. Phys. Letts.26, 672 (1975).

    Google Scholar 

  19. S. Wang, “Antenna Properties and Properties of Metal-Barrier-Metal Devices in the Infrared and Visible Regions,” Appl. Phys. Lett.28, 303 (1976).

    Google Scholar 

  20. S. I. Green, R. D. Coleman, and J. R. Baird, “The MOM Electric Tunneling Detector,” presented at the Symposium on Sub-Millimeter Waves, Polytechnic Institute of Brooklyn, New York (1970).

  21. S. I. Green, “Point Contact MOM Tunneling Detector Analysis,” J. Appl. Phys.42, 1166 (1971).

    Google Scholar 

  22. F. Mulligan, “Some Recent Determinations of the Velocity of Light, III,” Am. J. Phys.44, 960 (1967).

    Google Scholar 

  23. T. G. Blaney, C. C. Bradley, G. J. Edwards, B. W. Jolliffe, D. J. E. Knight, W. C. Rowley, K. C. Shotten, and P. T. Woods, “Measurement of the Speed of Light, I. Introduction and Frequency Measurement of a Carbon Dioxide Laser,” Proc. Roy. Soc. London,A355, 61 (1977).

    Google Scholar 

  24. Ibid., “Measurement of the Speed of Light. II. Wavelength Measurements and Conclusions,” Proc. Roy. Soc. LondonA355, 89 (1977).

    Google Scholar 

  25. E. Wiesendanger and F. Kneubuhl, “Thin Film MOM-Diodes for Infrared Detection,” Appl. Phys.13, 343 (1977).

    Google Scholar 

  26. J. G. Small, G. N. Elchinger, A. Javan, A. Sanchez, F. J. Bachner, and D. L. Symthe, “AC Electron Tunneling at Infrared Frequencies, Thin Film MOM Diode Structures with Broad-Band Characteristics,” Appl. Phys. Letts.24, 275 (1974).

    Google Scholar 

  27. A. G. M. Jansen, F. M. Mueller, and P. Wyder, “Normal Metallic Point Contacts,”Science, Vol. 199, 1037 (1978).

    Google Scholar 

  28. I. O. Kulik, A. N. Omel'yanchuk, and R. I. Shekter, “Electrical Conductivity of Point Microbridges and Phonon and Impurity Spectroscopy in Normal Metals,” Sov. J. Low Temp. Phys.,3, 12 (1977).

    Google Scholar 

  29. B. I. Verkin, I. K. Yanson, J. O. Kulik, O. I. Shklyarevski, A. A. Lyskh, and Yu. G. Nardyuk, “Singularities in d2V/dI2 Dependence of Point-Contacts Between Ferromagnetic Metals,” Solid State Comm.30, 215 (1979).

    Google Scholar 

  30. A. G. M. Jansen, J. H. van der Bosch, H. van Kampen, J. H. J. M. Kibott, P. H. Smeets, and P. Wyder, “Point-Contact Spectroscopy in Alkali Metals,” J. Phys. F: Metal Physics10, 265 (1980).

    Google Scholar 

  31. Inelastic Electron Tunneling spectroscopy, ed. by T. Wolfram, Solid-State Sci. No. 4 (Springer-Verlag, Berlin, 1978).

    Google Scholar 

  32. K. C. Liu, C. Davis, and A. Javan, “Electron Runneling Spectroscopy of High-Speed W-Ni Submicron Junctions,” Phys. Rev. Letters43, 735 (1979).

    Google Scholar 

  33. T. E. Feuchtwang, P. H. Cutler, and N. M. Miskovsky,” Comment on Electron Tunneling Spectroscopy of High-Speed W-Ni Submicron Junctions,” to be published in Phys. Rev. B. (March, 1981).

  34. D. A. Weitz, W. J. Skocpol, and M. Tinkham, “Far Infrared Frequency Dependence of the AC Josephson Effect in Niobium Point Contacts,” Phys. Rev.B 18, (1978).

  35. A. A. Lucas and P. H. Cutler, “Thermal Field Emission as a Mechanism for Infrared Laser Light Detection in Metal Whisker Diode,” Solid State Comm.13, 361 (1973).

    Google Scholar 

  36. J. G. Simmons, “Electric Tunnel Effect Between Dissimilar Electrodes Separated by a Thin Insulating Film,” J. Appl. Phys.34, 2581 (1963).

    Google Scholar 

  37. J. G. Simmons, “Potential Barriers and Emission-Limited Current Flow Between Closely Spaced Parallel Metal Electrodes,” J. Appl. Phys.35, 2472 (1964).

    Google Scholar 

  38. T. E. Sullivan, P. H. Cutler, and A. A. Lucas, “Thermal and Field Emission Effects of Laser Radiation on Metal Whisker Diodes. Application to Infrared Detection Devices,” Surf. Sci.54, 561 (1976).

    Google Scholar 

  39. T. E. Sullivan, A. A. Lucas, and P. H. Cutler, “Comments on Nonlinearity, Response Time, and Polarity Reversal in a Thermal Field Emission Metal Whisker Diode,” Appl. Phys.14, 284 (1977).

    Google Scholar 

  40. T. E. Sullivan, P. H. Cutler, and A. A. Lucas, “The Use of Antenna Theory to Calculate the Electric Fields in a Thermal Field Emission Metal Whisker Diode,” Surf. Sci.62, 455 (1977).

    Google Scholar 

  41. A. A. Lucas, A. Moussiaux, M. Schmeits, and P. H. Cutler, “Geometrical Asymmetry Effects on Tunneling Properties of Point Contact Junctions,” Comm. on Phys.2, 161 (1977).

    Google Scholar 

  42. N. Miskovsky, S. J. Shepherd, P. H. Cutler, T. E. Sullivan, and A. A. Lucas, “The Effect of Geometry, Field and Temperature in Tunneling and Rectification Behavior of Point Contact Junctions of Identical Metals,” Appl. Phys. Letts.35, 560 (1979).

    Google Scholar 

  43. N. M. Miskovsky, P. H. Cutler, T. E. Feuchtwang, S. J. Shepherd, and A. A. Lucas, “Effect of Geometry and Multiple Image Interactions on Tunneling and I–V Characteristics of Metal-Vacuum-Metal Point-Contact Junctions,” Appl. Phys. Letts.37, 189 (1980).

    Google Scholar 

  44. P. M. Morse and H. Feshbach,Methods of Theoretical Physics (McGraw-Hill, New York, 1953), Chap. VI.

    Google Scholar 

  45. For simplicity, we have restricted the analysis to the axis of symmetry. For off-axis points between tip and anode, the asymmetry in the image potential relative to planar-planar geometry becomes more pronounced.

  46. W. P. Dyke and W. W. Dolan, “Field Emission” inAdvance in Electron Physics Vol. 8 ed. by E. Marton (Academic Press, New York, 1956), p. 88.

    Google Scholar 

  47. W. P. Dyke, J. K. Trolan, W. W. Doland, and George Barnes, “The Field Emitter: Fabrication, Electron Microscopy and Electric Field Calculation,” J. Appl. Phys.24, 570 (1953).

    Google Scholar 

  48. J. W. Gadzuk and E. W. Plummer, “Field Emission Energy Distributions (FEED),” Rev. Mod. Phys.45, 487 (1973) and T. T. Tsong, private communications.

    Google Scholar 

  49. E. W. Hobson,Theory of Spherical and Ellipsoidal Harmonics, (Cambridge Univ. Press, Cambridge, 1931).

    Google Scholar 

  50. N. N. Lebedev,Special Functions and Their Applications, (Dover, New York, 1972).

    Google Scholar 

  51. N. N. Lebedev, I. P. Skalskaya, Y. S. Ufland,Worked Problems in Applied Mathematics, (Dover, New York, 1965).

    Google Scholar 

  52. C. B. Duke,Tunneling in Solids, Solid State Phys. Suppl. No. 10 (Academic Press, New York 1969).

    Google Scholar 

  53. D. Drury, T. K. Ishii, “A Stimulated Inelastic Tunneling Theory of Negative Differential Resistance in Metal-Insulator-Metal Diodes,” IEEE J. Quant. ElectronicsQE16, 58 (1980).

    Google Scholar 

  54. B. Fan, S. M. Faris, and T. K. Gustafson, “Nonlinear Optical Response of Metal-Barrier-Metal Junctions,” Appl. Phys. Letts.30, 177 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported in part by the NATO Research Grants Program, Grant No. 1902, Scientific Affairs Division, Brussels, BELGIUM.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miskovsky, N.M., Cutler, P.H., Feuchtwang, T.E. et al. A Green's function solution to the image and multiple image interactions for hyperboloidal geometry: Application to metallic pointcontact infrared detectors. Int J Infrared Milli Waves 2, 739–772 (1981). https://doi.org/10.1007/BF01007275

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01007275

Keywords

Navigation