Skip to main content

A Thermal-Field-Photoemission Model and Its Application

  • Chapter
  • First Online:
Modern Developments in Vacuum Electron Sources

Part of the book series: Topics in Applied Physics ((TAP,volume 135))

Abstract

Traditionally electron sources are characterized as thermal, field, and photoemission cathodes (a fourth, secondary, is not considered here), each governed by a canonical emission equation (Richardson—Laue—Dushman, Fowler—Nordheim, and Fowler—DuBridge, respectively) for current density. Modern electron sources operate such that more than one regime contributes because factors like heating and asperities exist. In this chapter, a single emission equation is developed that recovers the canonical equations in the appropriate asymptotic limits. Properties important to the formation of electron beams, such as emittance, Nottingham heating, and emission from protrusions, are examined.

All things in common nature should produce/Without sweat or endeavor.

—W. Shakespeare (The Tempest, Act II, Scene 1, Lines 133–134.)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Thermal emission often continues to be referred to as “thermionic emission,” reflecting a time when the emitted electrons due to heating (“thermions”) were thought to be different than those due to strong fields [37]. It is a convention that likely should expire, but which regrettably has not.

  2. 2.

    Although a fourth process, secondary emission, has received comparable interest and is used in vacuum electronic devices, the physical processes of transport and emission for it are similar to photoemission (the generation mechanism being energetic electrons rather than photons). Therefore, it is not treated separately, as the generation mechanisms are not under study here. See [38], or [39] for greater detail.

  3. 3.

    Remember that E is standing in for the normal energy component \(E_z\) when 1D equations are understood.

References

  1. B.N. Taylor, The International System of Units (SI). Special Publication (NIST SP) 330 (2008)

    Google Scholar 

  2. J.H. Booske, R.J. Dobbs, C.D. Joye, C.L. Kory, G.R. Neil, G.-S. Park, J. Park, R.J. Temkin, Vacuum electronic high power Terahertz sources. IEEE Trans. Terahertz Sci. Technol. 1(1), 54–75 (2011)

    Article  ADS  Google Scholar 

  3. D.R. Whaley, R. Duggal, C.M. Armstrong, C.L. Bellew, C.E. Holland, C.A. Spindt, 100 W operation of a cold cathode TWT. IEEE Trans. Electron Dev. 56(5), 896–905 (2009)

    Article  ADS  Google Scholar 

  4. J.W. Lewellen, High-brightness electron guns for linac-based light sources, Proc. of SPIE Int. Soc. Opt. Eng. 5534, 22–36 (2004)

    Google Scholar 

  5. D.R. Whaley, Practical design of emittance dominated linear beams for RF amplifiers. IEEE Trans. Electron Dev. 61(6), 1726–1734 (2014)

    Article  ADS  Google Scholar 

  6. M. Reiser, Theory and Design of Charged Particle Beams (Wiley, New York, 1994)

    Book  Google Scholar 

  7. J.H. Booske, Plasma physics and related challenges of millimeter-wave-to-terahertz and high power microwave generation, Phys. Plasmas 15(5), 055502 / 1–16 (2008)

    Google Scholar 

  8. C.A. Brau, High-brightness Electron Beams—small free-electron lasers. Nucl. Instr. Methods Phys. Res. Sect. A 407(1–3), 1–7 (1998)

    Article  ADS  Google Scholar 

  9. C.A. Brau, What brightness means, in Physics and Applications of High Brightness Electron Beams: Proceedings of the ICFA Workshop Chia Laguna, Sardinia, Italy 1-6 July 2002, edited by J. Rosenzweig, G. Travish, and L. Serafini (World Scientific Publishing Company, 2004), pp. 20–27

    Google Scholar 

  10. C.D. Joye, J.P. Calame, K.T. Nguyen, M. Garven, Microfabrication of fine electron beam tunnels using UV-LIGA and embedded polymer monofilaments for vacuum electron devices, J. Micromech. Microeng. 22(1), 015010 / 1–10 (2012)

    Google Scholar 

  11. R. Dobbs, A. Roitman, P. Horoyski, M. Hyttinen, D. Sweeney, B. Steer, N. Khanh, E. Wright, D. Chernin, A. Burke, J. Calame, B. Levush, N.S. Barker, J. Booske, M. Blank, Design and fabrication of terahertz extended interaction klystrons, in 35th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THZ 2010) 978 / 1–3 (2010)

    Google Scholar 

  12. Y. Wang, J. Wang, W. Liu, K. Zhang, J. Li, Development of high current-density cathodes with scandia-doped tungsten powders. IEEE Trans. Electron Dev. 54(5), 1061–1070 (2007)

    Article  ADS  Google Scholar 

  13. J.D. Jarvis, B.K. Choi, A.B. Hmelo, B. Ivanov, C.A. Brau, Emittance measurements of electron beams from diamond field emitter arrays. J. Vac. Sci. Technol. B 30(4), 042201–042205 (2012)

    Article  Google Scholar 

  14. P.M. Phillips, C. Hor, L. Malsawma, K.L. Jensen, E.G. Zaidman, Design and construction of apparatus for characterization of gated field emitter array electron emission. Rev. Sci. Instrum. 67(6), 2387–2393 (1996)

    Article  ADS  Google Scholar 

  15. K.L. Jensen, P.G. O’Shea, D.W. Feldman, J.L. Shaw, Emittance of a field emission electron source. J. Appl. Phys. 107(1), 014903–014914 (2010)

    Article  ADS  Google Scholar 

  16. Y. Ding, A. Brachmann, F.J. Decker, D. Dowell, P. Emma, J. Frisch, S. Gilevich, G. Hays, P. Hering, Z. Huang, R. Iverson, H. Loos, A. Miahnahri, H.D. Nuhn, D. Ratner, J. Turner, J. Welch, W. White, J. Wu, Measurements and simulations of ultralow emittance and ultrashort electron Beams in the Linac coherent light source, Phys. Rev. Lett. 102(25), 254801 / 1–4 (2009)

    Google Scholar 

  17. D.H. Dowell, I. Bazarov, B. Dunham, K. Harkay, C. Hernandez-Garcia, R. Legg, H. Padmore, T. Rao, J. Smedley, W. Wan, Cathode RandD for future light sources. Nucl. Instr. Methods Phys. Res. Sect. A, 622685–697 (2010)

    Google Scholar 

  18. G.R. Neil, L. Merminga, Technical approaches for high-average-power free-electron lasers. Rev. Mod. Phys. 74(3), 685–701 (2002)

    Article  ADS  Google Scholar 

  19. J.J. Petillo, C. Kostas, D. Panagos, S. Ovtchinnikov, A. Burke, T.M. Antonsen, E.L. Wright, K.T. Nguyen, E. Nelson, B.L. Held, J.F. DeFord, K.L. Jensen, J.A. Pasour, B. Levush, L. Ludeking, Electrostatic time-domain PIC simulations of RF density-modulated electron sources with MICHELLE, in IEEE International Vacuum Electronics Conference/International Vacuum Electron Sources Conference (IVEC/IVESC), 341–342 (2012)

    Google Scholar 

  20. D.H. Dowell, J.F. Schmerge, Quantum efficiency and thermal emittance of metal photocathodes, Phys. Rev. ST Accel. Beams 12(7), 074201 / 1–10 (2009)

    Google Scholar 

  21. J.R. Maldonado, P. Pianetta, D.H. Dowell, J. Corbett, S. Park, J. Schmerge, A. Trautwein, W. Clay, Experimental verification of the 3-step model of photoemission for energy spread and emittance measurements of copper and CsBr-coated copper photocathodes suitable for free electron laser applications. Appl. Phys. Lett. 101(23), 231103–231104 (2012)

    Article  ADS  Google Scholar 

  22. I.V. Bazarov, B.M. Dunham, C.K. Sinclair, Maximum achievable beam brightness from photoinjectors, Phys. Rev. Lett. 102(10), 104801 / 1–4 (2009)

    Google Scholar 

  23. T. Vecchione, I. Ben-Zvi, D.H. Dowell, J. Feng, T. Rao, J. Smedley, W. Wan, H.A. Padmore, A low emittance and high efficiency visible light photocathode for high brightness accelerator-based X-ray light sources. Appl. Phys. Lett. 99(3), 034103–034103 (2011)

    Article  ADS  Google Scholar 

  24. S. Karkare, I.V. Bazarov, Effect of nanoscale surface roughness on transverse energy spread from GaAs photocathodes, Appl. Phys. Lett. 98(9), 094104 / 1–3 (2011)

    Google Scholar 

  25. H.J. Qian, C. Li, Y.C. Du, L.X. Yan, J.F. Hua, W.H. Huang, C.X. Tang, Experimental investigation of thermal emittance components of copper photocathode. Phys. Rev. ST Accel. Beams 15(4), 040102–040108 (2012)

    Article  ADS  Google Scholar 

  26. A.C. Keser, T.M. Antonsen, G.S. Nusinovich, D.G. Kashyn, K.L. Jensen, Heating of Micro-protrusions in accelerating structures, Phys. Rev. ST Accel. Beams 16092001 / 1–8 (2013)

    Google Scholar 

  27. J. Norem, Z. Insepov, I. Konkashbaev, Triggers for RF breakdown. Nucl. Instr. Methods Phys. Res. Sect. A 537(3), 510–520 (2005)

    Article  ADS  Google Scholar 

  28. P.B. Wilson, Formation of Taylor cones on a molten metal surface followed by ion injection into the vacuum, High Gradient Workshop (2007)

    Google Scholar 

  29. A.R. Knox, A. Asenov, A.C. Lowe, An electron emission model for use with 3D electromagnetic finite element simulation. Solid-State Electron. 45(6), 841–851 (2001)

    Article  ADS  Google Scholar 

  30. E.M. Nelson, J.J. Petillo, An analysis of the basic space-charge-limited emission algorithm in a finite-element electrostatic gun code. IEEE Trans. Plas. Sci. 32(3), 1223–1235 (2004)

    Article  ADS  Google Scholar 

  31. J.J. Petillo, E.M. Nelson, J.F. Deford, N.J. Dionne, B. Levush, Recent developments to the MICHELLE 2-D/3-D electron gun and collector modeling code. IEEE Trans. Electron Dev. 52(5), 742–748 (2005)

    Article  ADS  Google Scholar 

  32. Y. Feng, J. Verboncoeur, A model for effective field enhancement for Fowler-nordheim field emission, Phys. Plasmas 12(10), 103301 / 1–6 (2005)

    Google Scholar 

  33. K.L. Jensen, J.J. Petillo, E.J. Montgomery, Z. Pan, D.W. Feldman, P.G. O’Shea, N.A. Moody, M. Cahay, J.E. Yater, J.L. Shaw, Application of a general electron emission equation to surface nonuniformity and current density variation. J. Vac. Sci. Technol. B 26(2), 831–837 (2008)

    Article  Google Scholar 

  34. R.G. Forbes, Exact analysis of surface field reduction due to field-emitted vacuum space charge, in parallel-plane geometry, using simple dimensionless equations. J. Appl. Phys. 104(8), 084303 (2008)

    Article  ADS  Google Scholar 

  35. K.L. Jensen, J. Lebowitz, Y.Y. Lau, J. Luginsland, Space charge and quantum effects on electron emission. J. Appl. Phys., 111054917–054919 (2012)

    Google Scholar 

  36. A. Rokhlenko, K.L. Jensen, J.L. Lebowitz, Space charge effects in field emission: one dimensional theory. J. Appl. Phys. 107(1), 014904–014910 (2010)

    Article  ADS  Google Scholar 

  37. R.A. Millikan, C.F. Eyring, Laws governing the pulling of electrons out of metals by Intense electrical fields. Phys. Rev. 27(1), 51–67 (1926)

    Article  ADS  Google Scholar 

  38. K.L. Jensen, A tutorial on electron sources. IEEE Trans. Plas. Sci. 46(6), 1881–1899 (2018)

    Article  ADS  Google Scholar 

  39. K.L. Jensen, Introduction to the Physics of Electron Emission (Wiley, Hoboken, New Jersey, 2017)

    Book  Google Scholar 

  40. S. Dushman, Thermionic emission. Rev. Mod. Phys. 2(4), 0381–0476 (1930)

    Article  ADS  Google Scholar 

  41. C. Herring, M.H. Nichols, Thermionic emission. Rev. Mod. Phys. 21(2), 185–270 (1949)

    Article  ADS  Google Scholar 

  42. O.W. Richardson, Electron emission from metals as a function of temperature. Phys. Rev. 23(2), 153–155 (1924)

    Article  ADS  Google Scholar 

  43. E.L. Murphy, R.H. Good, Thermionic emission, field emission, and the transition region. Phys. Rev. 102(6), 1464–1473 (1956)

    Article  ADS  Google Scholar 

  44. R.H. Fowler, L. Nordheim, Electron emission in intense electric fields. Proc. R. Soc. A 119(781), 173–181 (1928)

    ADS  MATH  Google Scholar 

  45. R.G. Forbes, Mainstream Theory of Field and thermal Electron Emission, p. Chapter 9 of this book

    Google Scholar 

  46. J.H.B. Deane, R.G. Forbes, The formal derivation of an exact series expansion for the principal Schottky-Nordheim barrier function v, using the Gauss hypergeometric differential equation, J. Phys. A: Math. Theor. 41(39), 395301 / 1–9 (2008)

    Google Scholar 

  47. R.G. Forbes, Simple good approximations for the special elliptic functions in standard Fowler-Nordheim tunneling theory for a Schottky-nordheim barrier, Appl. Phys. Lett. 89(11), 113122 / 1–3 (2006)

    Google Scholar 

  48. K.L. Jensen, Field Emission: Fundamental Theory to Usage, in Wiley Encyclopedia of Electrical and Electronics Engineering, ed. by J.G. Webster (Wiley, New York, 2014), pp. 1–29

    Google Scholar 

  49. L.A. DuBridge, A further experimental test of Fowler’s theory of photoelectric emission. Phys. Rev. 39(1), 108–118 (1932)

    Article  ADS  Google Scholar 

  50. R.H. Fowler, The analysis of photoelectric sensitivity curves for clean metals at various temperatures. Phys. Rev. 38(1), 45–56 (1931)

    Article  ADS  MATH  Google Scholar 

  51. J.W. Gadzuk, E.W. Plummer, Energy distributions for thermal field emission. Phys. Rev. B 3(7), 2125–2129 (1971)

    Article  ADS  Google Scholar 

  52. M.J. Fransen, T.H.L. Van Rooy, P.C. Tiemeijer, M.H.F. Overwijk, J.S. Faber, P. Kruit, On the electron-optical properties of the ZrO/W Schottky electron emitter, in Advances in Imaging and Electron Physics III, edited by P. Hawkes 91–166 (1999)

    Google Scholar 

  53. P. Geittner, G. Gärtner, D. Raasch, Low temperature properties of Ba-dispenser cathodes. J. Vac. Sci. Technol. B 18(2), 997–999 (2000)

    Google Scholar 

  54. S. Tsujino, F. le Pimpec, J. Raabe, M. Buess, M. Dehler, E. Kirk, J. Gobrecht, A. Wrulich, Static and optical field enhancement in metallic nanotips studied by two-photon photoemission microscopy and spectroscopy excited by picosecond laser pulses, Appl. Phys. Lett. 94(9), 093508 / 1–3 (2009)

    Google Scholar 

  55. K.L. Jensen, Electron emission theory and its application: Fowler-Nordheim equation and Beyond. J. Vac. Sci. Technol. B 21(4), 1528–1544 (2003)

    Article  Google Scholar 

  56. K.L. Jensen, On the application of quantum transport theory to electron sources. Ultramicroscopy 95(1–4), 29–48 (2003)

    Article  Google Scholar 

  57. K.L. Jensen, Electron Emission Physics, in Advances in Imaging and Electron Physics, vol. 149, ed. by P. Hawkes (Elsevier, San Diego, CA, 2007), pp. 1–338

    Google Scholar 

  58. K.L. Jensen, General formulation of thermal, field, and photoinduced electron emission. J. Appl. Phys. 102(2), 024911–024911 (2007)

    Article  ADS  Google Scholar 

  59. K.L. Jensen, B. Jensen, E.J. Montgomery, D.W. Feldman, P.G. O’Shea, N.A. Moody, Theory of photoemission from cesium antimonide using an alpha-semiconductor model. J. Appl. Phys. 104(4), 044907–044910 (2008)

    Article  ADS  Google Scholar 

  60. K.L. Jensen, A quantum dipole–modified work function for a simplified electron emission barrier, J. Appl. Phys. 111054916 / 1–10 (2012)

    Google Scholar 

  61. K.L. Jensen, Chpt. 3: Theory of Field Emission, in Vacuum Microelectronics, ed. by W. Zhu (Wiley, New York, 2001), pp. 33–104

    Chapter  Google Scholar 

  62. R. Kubo, Statistical Mechanics, an Advanced Course With Problems and Solutions (North-Holland Pub. Co. Interscience Publishers, Amsterdam, New York, 1965)

    MATH  Google Scholar 

  63. P.H. Cutler, D. Nagy, Use of a new potential barrier model in Fowler-Nordheim theory of field emission. Surf. Sci. 3(1), 71–94 (1965)

    Article  ADS  Google Scholar 

  64. W.W. Dolan, W.P. Dyke, Temperature-and-field Emission of electrons from metals. Phys. Rev. 95(2), 327–332 (1954)

    Article  ADS  Google Scholar 

  65. R.G. Forbes, Use of energy-space diagrams in free-electron models of field electron emission. Surf. Interface Anal. 36(5–6), 395–401 (2004)

    Article  Google Scholar 

  66. L.A. DuBridge, Theory of the energy distribution of photoelectrons. Phys. Rev. 43(9), 0727–0741 (1933)

    Article  ADS  Google Scholar 

  67. J.W. Gadzuk, E.W. Plummer, Field emission energy distribution (FEED). Rev. Mod. Phys. 45(3), 487–548 (1973)

    Article  ADS  Google Scholar 

  68. A. Modinos, Field, Thermionic, and Secondary Electron Emission Spectroscopy (Plenum Press, New York, 1984)

    Book  Google Scholar 

  69. R.D. Young, E.W. Müller, Experimental measurement of the total-energy distribution of field-emitted electrons. Phys. Rev. 113(1), 115–120 (1959)

    Article  ADS  Google Scholar 

  70. R.G. Forbes, Physics of generalized Fowler-Nordheim-type equations. J. Vac. Sci. Technol. B, 26788 (2008)

    Google Scholar 

  71. R.G. Forbes, J.H.B. Deane, Transmission coefficients for the exact triangular barrier: an exact general analytical theory that can replace Fowler and Nordheim’s 1928 theory. Proc. R. Soc. A, 4672927–2947 (2011)

    Google Scholar 

  72. E.C. Kemble, A contribution to the theory of the BWK method. Phys. Rev. 48(6), 549–561 (1935)

    Article  ADS  MATH  Google Scholar 

  73. S.C. Miller, R.H. Good, A WKB-type approximation to the Schrödinger equation. Phys. Rev. 91(1), 174–179 (1953)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  74. K.L. Jensen, A reformulated general thermal-field emission equation, J. Appl. Phys. 126(6), 065302 / 1–13 (2019)

    Google Scholar 

  75. K.L. Jensen, M. McDonald, J.R. Harris, D.A. Shiffler, M. Cahay, J.J. Petillo, Analytic model of a compound thermal-field emitter and its performance. J. Appl. Phys. 126(24), 245301 (2019)

    Article  ADS  Google Scholar 

  76. R.G. Forbes, On the need for a tunneling pre-factor in Fowler-Nordheim tunneling theory. J. Appl. Phys. 103(11), 114911 (2008)

    Article  ADS  Google Scholar 

  77. K.L. Jensen, M. McDonald, O. Chubenko, J.R. Harris, D.A. Shiffler, N.A. Moody, J.J. Petillo, A.J. Jensen, Thermal-field and photoemission from meso- and micro-scale features: effects of screening and roughness on characterization and simulation, J. Appl. Phys. 125(23), 234303 / 1–25 (2019)

    Google Scholar 

  78. A. Kyritsakis, J.P. Xanthakis, Extension of the general thermal field equation for Nanosized Emitters, J. Appl. Phys. 119(4), 045303 / 1–6 (2016)

    Google Scholar 

  79. F.M. Charbonnier, R.W. Strayer, L.W. Swanson, E.E. Martin, Nottingham effect in field and T-F emission: heating and cooling domains, and inversion temperature. Phys. Rev. Lett. 13(13), 397–401 (1964)

    Article  ADS  Google Scholar 

  80. W.B. Nottingham, Thermionic emission from tungsten and thoriated tungsten filaments. Phys. Rev. 49(1), 78–97 (1936)

    Article  ADS  Google Scholar 

  81. M.G. Ancona, Thermomechanical analysis of failure of metal field emitters. J. Vac. Sci. Technol. B 13(6), 2206–2214 (1995)

    Article  Google Scholar 

  82. G. Fursey, Field Emission in Vacuum Microelectronics (Kluwer Academic/Plenum Publishers, New York, 2005)

    Google Scholar 

  83. J. Norem, V. Wu, A. Moretti, M. Popovic, Z. Qian, L. Ducas, Y. Torun, N. Solomey, Dark current, breakdown, and magnetic field effects in a multicell, 805 MHz cavity, Phys. Rev. ST Accel. Beams 6(7), 072001 / 1–21 (2003)

    Google Scholar 

  84. R.G. Forbes, Simple derivation of the formula for Sommerfeld supply density used in electron-emission physics and limitations on its use. J. Vac. Sci. Technol. B 28(6), 1326–1329 (2010)

    Article  Google Scholar 

  85. K.L. Jensen, Y.Y. Lau, D.W. Feldman, P.G. O’Shea, Electron emission contributions to dark current and its relation to microscopic field enhancement and heating in accelerator structures, Phys. Rev. ST Accel. Beams 11(8), 081001 / 1–17 (2008)

    Google Scholar 

  86. C.A. Spindt, I. Brodie, L. Humphrey, E.R. Westerberg, Physical properties of thin-film field emission cathodes with Molybdenum cones. J. Appl. Phys. 47(12), 5248–5263 (1976)

    Article  ADS  Google Scholar 

  87. C.A. Spindt, C. Holland, P.R. Schwoebel, I. Brodie, Field emitter array development for microwave applications. II. J. Vac. Sci. Technol. B 16(2), 758–761 (1998)

    Article  Google Scholar 

  88. D.A. Shiffler, J. Luginsland, M. Ruebush, M. Lacour, K. Golby, K. Cartwright, M. Haworth, T. Spencer, Emission uniformity and shot-to-shot variation in cold field emission cathodes. IEEE Trans. Plas. Sci. 32(3), 1262–1266 (2004)

    Article  ADS  Google Scholar 

  89. D.A. Shiffler, W. Tang, K.L. Jensen, K. Golby, M. LaCour, J.J. Petillo, J.R. Harris, Effective field enhancement factor and the influence of emitted space charge, J. Appl. Phys. 118(8), 083302 / 1–6 (2015)

    Google Scholar 

  90. K.L. Jensen, D.W. Feldman, P.G. O’Shea, Time dependent Models of Field-assisted photoemission. J. Vac. Sci. Technol. B 23(2), 621–631 (2005)

    Article  Google Scholar 

  91. A. Kyritsakis, G.C. Kokkorakis, J.P. Xanthakis, T.L. Kirk, D. Pescia, Self focusing of field emitted electrons at an ellipsoidal tip, Appl. Phys. Lett. 97(2), 023104 / 1–3 (2010)

    Google Scholar 

  92. R.L. Hartman, W.A. Mackie, P.R. Davis, Use of Boundary-element methods in-field emission computations. J. Vac. Sci. Technol. B 12(2), 754–758 (1994)

    Article  Google Scholar 

  93. K.L. Jensen, E.G. Zaidman, M.A. Kodis, B. Goplen, D. Smithe, Analytical and seminumerical models for gated field emitter arrays. 1. Theory. J. Vac. Sci. Technol. B 14(3), 1942–1946 (1996)

    Article  Google Scholar 

  94. S. Watcharotone, R.S. Ruoff, F.H. Read, Possibilities for graphene for field emission: modeling studies using the BEM. Phys. Procedia 1(1), 71–75 (2008)

    Article  ADS  Google Scholar 

  95. C.J. Edgcombe, U. Valdre, Experimental and computational study of field emission characteristics from amorphous carbon single nanotips grown by carbon contamination—I. Experiments and computation. Philos. Mag. B 82(9), 987–1007 (2002)

    ADS  Google Scholar 

  96. W. Schottky, Über kalte und warme Elektronenentladungen. Zeitschrift für Physik 14(1), 63–106 (1923)

    Article  ADS  Google Scholar 

  97. T.E. Stern, B.S. Gossling, R.H. Fowler, Further studies in the emission of electrons from cold metals. Proc. R. Soc. A 124(795), 699–723 (1929)

    ADS  Google Scholar 

  98. W.P. Dyke, J.K. Trolan, W.W. Dolan, G. Barnes, The field emitter: fabrication, electron microscopy, and electric field calculations. J. Appl. Phys. 24(5), 570–576 (1953)

    Article  ADS  Google Scholar 

  99. K.L. Jensen, D.A. Shiffler, J.J. Petillo, Z. Pan, J.W. Luginsland, Emittance, surface structure, and electron emission. Phys. Rev. ST Accel. Beams 17(4), 043402–043419 (2014)

    Article  ADS  Google Scholar 

  100. K.L. Jensen, D.A. Shiffler, I.M. Rittersdorf, J.L. Lebowitz, J.R. Harris, Y.Y. Lau, J.J. Petillo, W. Tang, J.W. Luginsland, Discrete space charge affected field emission: flat and hemisphere emitters, J. Appl. Phys. 117(19), 194902 / 1–17 (2015)

    Google Scholar 

  101. J.W. Lewellen, C.A. Brau, Rf photoelectric injectors using needle cathodes. Nucl. Instr. Methods Phys. Res. Sect. A 507(1–2), 323–326 (2003)

    Article  ADS  Google Scholar 

  102. R.G. Forbes, K.L. Jensen, New results in the theory of Fowler-Nordheim plots and the modelling of hemi-ellipsoidal emitters. Ultramicroscopy 89(1–3), 17–22 (2001)

    Article  Google Scholar 

  103. R.A. Kishek, S. Bernal, C.L. Bohn, D. Grote, I. Haber, H. Li, P.G. O’Shea, M. Reiser, M. Walter, Simulations and experiments with space-charge-dominated beams. Phys. Plasmas 10(5), 2016–2021 (2003)

    Article  ADS  Google Scholar 

  104. J.D. Zuber, K.L. Jensen, T.E. Sullivan, An analytical solution for microtip field emission current and effective emission area. J. Appl. Phys. 91(11), 9379–9384 (2002)

    Article  ADS  Google Scholar 

  105. J.R. Harris, K.L. Jensen, D.A. Shiffler, Modelling field emitter arrays using line charge distributions, J. Phys. D Appl. Phys. 48(38), 385203 / 1–9 (2015)

    Google Scholar 

  106. P.B. Wilson, A theory for the comparative rf surface fields at destructive breakdown for various metels, SLAC-TN-06-003 (2006)

    Google Scholar 

  107. K.L. Jensen, Space charge effects in field emission: three dimensional theory. J. Appl. Phys. 107(1), 014905–014909 (2010)

    Article  ADS  Google Scholar 

  108. K.L. Jensen, Space charge, emittance, trajectories, and the modeling of field emitter arrays, J. Vac. Sci. Technol. B 29(2), 02B101-02B1017 (2011)

    Google Scholar 

  109. P.R. Schwoebel, C.A. Spindt, C. Holland, High current, high current density field emitter array cathodes. J. Vac. Sci. Technol. B 23(2), 691–693 (2005)

    Article  Google Scholar 

  110. C. Spindt, C. Holland, P.R. Schwoebel, Thermal field forming of Spindt cathode arrays, J. Vac. Sci. Technol. B 33(3), 03C108 / 1–3 (2015)

    Google Scholar 

  111. K.L. Jensen, D.A. Shiffler, J.R. Harris, J.J. Petillo, Schottky’s conjecture, field emitters, and the point charge model, AIP Adv. 6065005 / 1–6 (2016)

    Google Scholar 

  112. M. Cahay, W. Zhu, S. Fairchild, P.T. Murray, T.C. Back, G.J. Gruen, Multiscale model of heat dissipation mechanisms during field emission from carbon nanotube fibers, Appl. Phys. Lett. 108(3), 033110 / 1–5 (2016)

    Google Scholar 

  113. V.L. Granatstein, R.K. Parker, C.M. Armstrong, Vacuum electronics at the dawn of the twenty-first century. Proc. IEEE 87(5), 702–716 (1999)

    Article  Google Scholar 

  114. C. Bostedt, J.D. Bozek, P.H. Bucksbaum, R.N. Coffee, J.B. Hastings, Z. Huang, R.W. Lee, S. Schorb, J.N. Corlett, P. Denes, P. Emma, R.W. Falcone, R.W. Schoenlein, G. Doumy, E.P. Kanter, B. Kraessig, S. Southworth, L. Young, L. Fang, M. Hoener, N. Berrah, C. Roedig, L.F. DiMauro, Ultra-fast and ultra-intense X-ray sciences: first results from the Linac Coherent Light Source free-electron laser, J. Phys. B: Atomic Molecul. Opt. Phys. 46(16, SI), 164003 / 1–21 (2013)

    Google Scholar 

  115. P.H. Bucksbaum, N. Berrah, Brighter and faster: the promise and challenge of the X-ray free-electron laser. Phys. Today 68(7), 26–32 (2015)

    Article  Google Scholar 

  116. D.A. Dimitrov, D. Smithe, J.R. Cary, I. Ben-Zvi, T. Rao, J. Smedley, E. Wang, Modeling electron emission and surface effects from diamond cathodes, J. Appl. Phys. 117055708 / 1–18 (2015)

    Google Scholar 

  117. K.L. Jensen, J.E. Yater, J.L. Shaw, R.E. Myers, B.B. Pate, J.E. Butler, T. Feygelson, Bunch characteristics of an electron beam generated by a diamond secondary emitter amplifier. J. Appl. Phys. 108(4), 044509–044512 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin L. Jensen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jensen, K.L. (2020). A Thermal-Field-Photoemission Model and Its Application. In: Gaertner, G., Knapp, W., Forbes, R.G. (eds) Modern Developments in Vacuum Electron Sources. Topics in Applied Physics, vol 135. Springer, Cham. https://doi.org/10.1007/978-3-030-47291-7_8

Download citation

Publish with us

Policies and ethics