Journal of Applied Electrochemistry

, Volume 16, Issue 5, pp 719–731 | Cite as

The electrochemical behaviour of silver sulphide in sulphuric acid solutions

  • D. W. Price
  • G. W. Warren
  • B. Drouven


The electrochemical behaviour of synthetic silver sulphide (acanthite) electrodes in sulphuric acid solutions has been investigated using several techniques including cyclic voltammetry, anodic polarization and constant potential experiments. Under anodic polarization the dissolution has been attributed to the reaction Ag2S=2Ag++S+2e which occurs in two sequential, single electron transfer steps. A kinetic model for this stepwise anodic dissolution process at lower overpotential, where the current is a function of potential, is provided. At high dissolution rates (i.e. high currents) the slightly soluble silver sulphate salt is formed on the surface due to the saturation of the electrolyte near the Ag2S interface. This observation is supported by the influence of electrolyte composition on the cyclic voltammetry and the polarization curve. A paralinear film growth model has been found to describe the formation and growth of the silver sulphate product layer indicating an initial region of parabolic kinetics which gradually changes to linear kinetics as the rate of film dissolution approaches that of film formation.


Cyclic Voltammetry Anodic Polarization Ag2S Single Electron Transfer Sulphuric Acid Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. J. Snell and M. C. Sze,Eng. Mining. J. 178 (1977) 100.Google Scholar
  2. [2]
    F. E. Pawlek, in ‘Extractive Metallurgy of Copper’ (edited by J. C. Yannopoulos and J. C. Agarwal) AIME, New York (1976) p. 690.Google Scholar
  3. [3]
    J. D. Miller and H. Q. Portillo,Dev. Miner. Process. 2 (1981) 851.Google Scholar
  4. [4]
    G. W. Warren, B. Drouven and D. W. Price,Metall. Trans. B 15B (1984) 235.Google Scholar
  5. [5]
    R. L. Paul, M. J. Nicol, J. W. Diggle and A. P. Saunders,Electrochim. Acta 23 (1978) 625.Google Scholar
  6. [6]
    B. Dandapani and E. Ghali,Trans. Instn. Min. Metall. 91 (1982) 38.Google Scholar
  7. [7]
    R. A. Narasgoudar, J. W. Johnson, and T. J. O'Keefe,Hydrometallurgy 9 (1982) 37.Google Scholar
  8. [8]
    T. Biegler and D. A. Swift,J. Appl. Electrochem. 9 (1979) 545.Google Scholar
  9. [9]
    B. Dandapani and E. Ghali,J. Electrochem. Soc. 129 (1982) 271.Google Scholar
  10. [10]
    M. H. Lietzke and R. W. Stoughton,J. Phys. Chem. 65 (1961) 2247.Google Scholar
  11. [11]
    ,J. Amer. Chem. Soc. 78 (1956) 3023.Google Scholar
  12. [12]
    J. Gulens and D. W. Shoesmith,J. Electrochem. Soc. 128 (1981) 811.Google Scholar
  13. [13]
    V. I. Birss and G. A. Wright,Electrochim. Acta 27 (1982) 1.Google Scholar
  14. [14]
    J. O'M. Bockris and G. A. Razumney, ‘Fundamental Aspects of Electrocrystallization’, Plenum Press, New York (1967) p. 36.Google Scholar
  15. [15]
    J. B. Hiskey,Inst. Min. Metall. 88C (1979) 145.Google Scholar
  16. [16]
    M. J. Nicol, R. L. Paul and J. W. Diggle,Electrochim. Acta 23 (1978) 635.Google Scholar
  17. [17]
    K. J. Vetter, ‘Electrochemical Kinetics’, Academic Press, New York (1967) pp. 149–53.Google Scholar
  18. [18]
    M. E. Wadsworth and T. K. Zhong, in ‘Hydrometallurgical Process Fundamentals’ (edited by R. G. Bautista), Plenum Press, New York (1984).Google Scholar
  19. [19]
    J. O'M. Bockris and A. K. N. Reddy, ‘Modern Electrochemistry’, Plenum Publishing Co., New York (1973) pp. 1291–5.Google Scholar
  20. [20]
    A. R. Despic and J. O'M. Bockris,J. Chem. Phys. 32 (1960) 389.Google Scholar
  21. [21]
    P. Kofstad, ‘High Temperature Oxidation of Metals’, John Wiley, New York (1966) pp. 1–19.Google Scholar
  22. [22]
    J. H. Ahn, PhD dissertation, Department of Metallurgical Engineering, University of Utah, Salt Lake City, Utah (1985).Google Scholar
  23. [23]
    E. W. Haycock,J. Electrochem. Soc. 106 (1959) 771.Google Scholar
  24. [24]
    G. W. Warren and M. E. Wadsworth,Metall. Trans. B 15B (1984) 289.Google Scholar
  25. [25]
    D. W. Price and G. W. Warren,Hydrometallurgy 15 (1986) 303.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1986

Authors and Affiliations

  • D. W. Price
    • 1
  • G. W. Warren
    • 1
  • B. Drouven
    • 1
  1. 1.Department of Metallurgical Engineering and Materials ScienceCarnegie-Mellon UniversityPittsburghUSA

Personalised recommendations