Skip to main content
Log in

In situ evaluation of the functional state of chromatin by means of Quinacrine Mustard staining and time-resolved fluorescence microscopy

  • Papers
  • Published:
The Histochemical Journal Aims and scope Submit manuscript

Summary

A pulsed laser microfluorometer with high spatial and temporal resolution was employed to study the functional state of chromatin, using Quinacrine Mustard as the fluorescent probe. Corresponding segments of polytene chromosomes of embryo suspensor cells ofPhaseolus coccineus and parenchymal cells ofHelianthus tuberosus, in phases not involving DNA synthesis, were selected as models. The fluorescence decay time turned out to be a discriminating parameter for the chromatin fractions of differing functional engagement. The results were interpreted on the basis of a different accessibility of the DNA to the intercalating agent, as a result of the different structural situation of the chromatin. This fact determines modifications of the energy transfer rates between dye molecules in different quantum efficiency conditions, which results in variations of fluorescence decay times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adamson, D. (1962) Expansion and division in auxin treated plant cells.Can. J. Bot. 40, 719–34.

    Google Scholar 

  • Andreoni, A., Cova, S., Bottiroli, G. &Prenna, G. (1979) Fluorescence of complexes of Quinacrine Mustard with DNA: II) Dependence on the staining conditions.Photochem. Photobiol. 29, 951–7.

    Google Scholar 

  • Andreoni, A., Longoni, A., Sacchi, C. A. &Svelto, O. (1980) Laser fluorescent microirradiation. A new technique. InThe Biomedical Laser: Technology and Clinical Applications (edited byGoldman, L.), pp. 69–83. Berlin, Heidelberg, New York: Springer-Verlag.

    Google Scholar 

  • Andreoni, A., Longoni, A., Sacchi, C. A., Svelto, O. &Bottiroli, G. (1976) Laser induced fluorescence of biological molecules. InTunable Lasers and Application (edited byMooradian, A., Jäger, T. andStokseth, P.), pp. 303–313. Berlin, Heidelberg, New York: Springer-Verlag.

    Google Scholar 

  • Birks, J. B. (1970)Photophysics of Aromatic Molecules. pp. 521–523, 567–576. New York: Wiley.

    Google Scholar 

  • Bonner, J. (1979) Expressed and non-expressed portions of the genome: their separation and their characterization. InChromatin Structure and Function. Molecular and Cellular Biophysical Methods (edited byNicolini, C. A.), pp. 15–23. New York, London: Plenum Press.

    Google Scholar 

  • Bottiroli, G., Prenna, G., Andreoni, A., Sacchi, C. A. &Svelto, O. (1979) Fluorescence of complexes of Quinacrine Mustard with DNA: I) Influence of the DNA base composition on the decay time in bacteria.Photochem. Photobiol. 29, 23–8.

    Google Scholar 

  • Brady, T. (1973) Feulgen cytophotometric determination of the DNA content of the embryo proper and suspensor cells ofPhaseolus coccineus.Cell Diff. 2, 65–75.

    Google Scholar 

  • Brand, L. &Gohlke, J. R. (1972) Fluorescent probes for structure.Ann. Rev. Biochem. 41, 843–68.

    Google Scholar 

  • Brand, L., Ross, J. A. A. &Laws, W. R. (1981) Nanosecond fluorometry and the luminescence of biological macromolecules.Ann. N.Y. Acad. Sci. 366, 197–207.

    Google Scholar 

  • Brand, L. &Witholt, B. (1967) Fluorescence measurement. InMethods in Enzymology (edited byColowick, S. andKaplan, N. O.), Vol. 11, pp. 776–856. New York: Academic Press.

    Google Scholar 

  • Caspersson, T., Zech, P., Johansson, C. &Modest, E. J. (1970) Identification of human chromosomes by DNA-binding fluorescent agents.Chromosoma 30, 215–27.

    Google Scholar 

  • Comings, D. E., Kovacs, B. W., Avelino, E. &Harris, D. C. (1975) Mechanism of chromosome banding: V) Quinacrine banding.Chromosoma 50, 111–45.

    Google Scholar 

  • Cova, S. &Longoni, A. (1979) An introduction to signal, noise and measurements. InAnalytical Laser Spectroscopy (edited byOmenetto, N.), pp. 411–491. New York: Wiley.

    Google Scholar 

  • Diez, J. L. &Cionini, P. G. (1971) DNA/histone ratio in different regions of polytene chromosomes in the embryo suspensor cells ofPhaseolus coccineus.Caryologia 24, 463–70.

    Google Scholar 

  • Edelman, G. M. &McClure, W. O. (1968) Fluorescent probes and conformation of proteins.Accounts Chem. Res. 1, 65–70.

    Google Scholar 

  • Freitas, I., Giordano, P. &Bottiroli, G. (1981) Improvement in microscope photometry by voltage to frequency conversion: analogue measurement and digital processing.J. Microsc. 124, 211–8.

    Google Scholar 

  • Kapoor, M. (1976) The application of fluorescence and fluorescent probes in biological systems.Biol. Rev. 47, 27–51.

    Google Scholar 

  • Latt, S. A. (1979) Fluorescent probes and DNA microstructure and synthesis. InFlow Cytometry and Sorting (edited byMelamed, M. R., Mullaney, P. andMendelsohn, M. L.), pp. 263–284. New York: Wiley.

    Google Scholar 

  • Latt, S. A., Brodie, S. &Munroe, S. H. (1974) Optical studies of complexes of Quinacrine with DNA and chromatin: implications for the fluorescence of cytological chromosome preparations.Chromosoma 49, 17–40.

    Google Scholar 

  • Latt, S. A., Sahar, E., Eisenhard, M. E. &Juergens, L. A. (1980) Interactions between pairs of DNA-binding dyes: Results and implications for chromosome analysis.Cytometry 1, 2–12.

    Google Scholar 

  • Le Pecq, J. B. (1976) Cation fluorescent probes of polynucleotides. InBiochemical Fluorescence: Concepts (edited byChen, R. F. andEdelhoch, H.), Vol. 2, pp. 711–736. New York, Basel: Dekker.

    Google Scholar 

  • Mitchell, J. P. (1967) DNA synthesis during early division cycles of Jerusalem artichoke callus cultures.Ann. Bot. 31, 427–35.

    Google Scholar 

  • Nagl, W. (1974) ThePhaseolus suspensor and its polytene chromosomes.Z. Pflanzenphysiol. 73, 1–44.

    Google Scholar 

  • Nicolini, C. (1981) Chromatin: a multidisciplinary approach to its native structure.Basic Appl. Histochem. 25, 319–22.

    Google Scholar 

  • Nicolini, C. &Kendal, F. (1977) Differential light scattering in native chromatin: correction and interference combining melting and dye binding studies. A two-order superhelical model.Physiol. Chem. Phys. 9, 265–83.

    Google Scholar 

  • Partanen, C. R. (1959) Chromosomal changes in plant cells. InDevelopmental Cytology (edited byRudnick, D.), pp. 21–45. New York: Ronald Press.

    Google Scholar 

  • Radda, G. K. &Vanderkooi, J. (1972) Can fluorescent probes tell us anything about membranes?Biochim. Biophys. Acta 265, 509–49.

    Google Scholar 

  • Sacchi, C. A., Svelto, O. &Prenna, G. (1974) Pulsed tunable lasers in cytofluorometry.Histochem. J. 6, 251–8.

    Google Scholar 

  • Sahar, E. &Latt, S. A. (1978) Enhancement of banding pattern in human metaphase chromosomes by energy transfer.Proc. natn. Acad. Sci. U.S.A. 75, 5650–4.

    Google Scholar 

  • Savage, M. &Bonner, J. (1978) Fractionation of chromatin into template-active and template-inactive portions. InMethods in Cell Biology (edited byStein, G., Stein, J. andKleinsmith, L. J.), Vol. 18, pp. 1–21. New York, London: Academic Press.

    Google Scholar 

  • Serafini Fracassini, D., Bagni, N., Cionini, P. G. &Bennici, A. (1980) Polyamines and nucleic acids during the first cell cycle ofHelianthus tuberosus tissue after the dormancy break.Planta 148, 332–7.

    Google Scholar 

  • Ware, W. R. (1973) Techniques for lifetime measurements and time resolved emission spectroscopy. InFluorescence Techniques in Cell Biology (edited byThear, A. A. andSernets, M.), pp. 15–27. Berlin, Heidelberg, New York: Springer-Verlag.

    Google Scholar 

  • Weber, G. (1976) Practical applications and philosophy of optical spectroscopic probes. InHorizons in Biochemistry and Biophysics (edited byQuagliariello, E.), Vol. 2, pp. 162–198. London: Addison-Wesley.

    Google Scholar 

  • Yeoman, M. M. &Evans, P. K. (1967) Growth and differentiation of plant tissue cultures. II. The occurrence of synchronous cell division in developing callus cultures.Ann. Bot. 31, 323–32.

    Google Scholar 

  • Yguerabide, J. (1973) Nanosecond fluorescence spectroscopy of macromolecules. InMethods in Enzymology (edited byHirs, C. H. W. andTimasheff, S. N.), Vol. 26, pp. 498–578. New York: Academic Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bottiroli, G., Cionini, P.G., Docchio, F. et al. In situ evaluation of the functional state of chromatin by means of Quinacrine Mustard staining and time-resolved fluorescence microscopy. Histochem J 16, 223–233 (1984). https://doi.org/10.1007/BF01003607

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01003607

Keywords

Navigation