Skip to main content

Visualizing Chromatin Modifications in Isolated Nuclei

  • Protocol
  • First Online:
The Nucleus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2175))

  • 1003 Accesses

Abstract

Modifications in chromatin structure are traditionally monitored by biochemical assays that provide average measurements of static events in a population of cells. Microscopy provides a method by which single cells or nuclei can be observed. Traditionally, microscopy has been used to image the nucleus by the application of immunostaining to chemically fixed samples or the use of exogenously expressed fluorescent proteins. This method represents an approach to observe changes in endogenous proteins relating to chromatin structure in real time. Here we describe a method for isolating transcriptionally and enzymatically active nuclei from live cells and visualizing events using fluorescently labeled antibodies. This method allows the observation of real time changes in chromatin architecture and can be used to observe the effects of drugs on nuclei while under microscopic observation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heitz E (1928) Das Heterochromatin der Moose. I Jahrb Wiss Bot 69:762–818

    Google Scholar 

  2. Harr JC, Gonzalez-Sandoval A, Gasser SM (2016) Histones and histone modifications in perinuclear chromatin anchoring: from yeast to man. EMBO Rep 17:139–155

    Article  CAS  Google Scholar 

  3. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080

    Article  CAS  Google Scholar 

  4. Benedetti R, Conte M, Altucci L (2015) Targeting histone deacetylases in diseases: where are we? Antioxid Redox Signal 23:99–126

    Article  CAS  Google Scholar 

  5. Brien GL, Valerio DG, Armstrong SA (2016) Exploiting the epigenome to control cancer-promoting gene-expression programs. Cancer Cell 29:464–476

    Article  CAS  Google Scholar 

  6. Milavetz BI, Balakrishnan L (2015) Viral epigenetics. Methods Mol Biol 1238:569–596

    Article  Google Scholar 

  7. Zhu J, Adli M, Zou JY et al (2013) Genome-wide chromatin state transitions associated with developmental and environmental cues. Cell 152:642–654

    Article  CAS  Google Scholar 

  8. Lakadamyali M, Cosma MP (2015) Advanced microscopy methods for visualizing chromatin structure. FEBS Lett 589:3023–3030

    Article  CAS  Google Scholar 

  9. Kimura H, Hayashi-Takanaka Y, Stasevich TJ et al (2015) Visualizing posttranslational and epigenetic modifications of endogenous proteins in vivo. Histochem Cell Biol 144:101–109

    Article  CAS  Google Scholar 

  10. Ricci MA, Manzo C, García-Parajo MF et al (2015) Chromatin fibers are formed by heterogeneous groups of nucleosomes in vivo. Cell 160:1145–1158

    Article  CAS  Google Scholar 

  11. Smeets D, Markaki Y, Schmid VJ et al (2014) Three-dimensional super-resolution microscopy of the inactive X chromosome territory reveals a collapse of its active nuclear compartment harboring distinct Xist RNA foci. Epigenetics Chromatin 7:8

    Article  Google Scholar 

  12. Wombacher R, Heidbreder M, van de Linde S et al (2010) Live-cell super-resolution imaging with trimethoprim conjugates. Nat Methods 7:717–719

    Article  CAS  Google Scholar 

  13. Sardo L, Lin A, Khakhina S et al (2017) Real-time visualization of chromatin modification in isolated nuclei. J Cell Sci 130:2926–2940

    Article  CAS  Google Scholar 

  14. Farrell RE (2010) Analysis of nuclear RNA. In: RNA methodologies. A laboratory guide for isolation and characterization, 4th edn. Elsevier/Academic Press, San Diego

    Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grant 1DP2DA044550 and the W. W. Smith Charitable Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zachary Klase .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Li, Y., Klase, Z., Sardo, L. (2020). Visualizing Chromatin Modifications in Isolated Nuclei. In: Hancock, R. (eds) The Nucleus . Methods in Molecular Biology, vol 2175. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0763-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0763-3_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0762-6

  • Online ISBN: 978-1-0716-0763-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics