Skip to main content
Log in

Transient natural convection in horizontal cylinders with constant cooling rate

  • Published:
Wärme - und Stoffübertragung Aims and scope Submit manuscript

Abstract

Transient natural convection in horizontal cylinders with wall temperature decreasing at a constant rate is approached by a numerical method. Numerical solutions are obtained for Pr=0.7, 10, 100 and a range of modified Grashof numbers Gra=103 ∼ 109. The time-dependent flow and temperature fields, local and overall heat transfer rates are presented. For quasi-steady state, a generalized correlation equation for Nusselt number valid for Pr ⩾0.7 and GrPr < 107 is developed.

Zusammenfassung

Nichtstationäre natürliche Konvektion in horizontalen Zylindern mit stetig fallender Wand-temperatur wurde numerisch berechnet und zwar für Pr=0,7, 10 und 100 im Bereich der modifizierten Grashof-Zahl Gra von 103 bis 109. Mitgeteilt werden die zeitabhängigen Stromlinien- und Temperaturf eider so wie der örtliche und der totale Wärmeübergang. Für den quasistationären Fall wird eine verallgemeinerte Nusselt-Funktion für Pr ⩾0,7 und GrPr < 107 angegeben.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a:

inside radius of cylinder [m]

cp :

specific heat at constant pressure [J/kg°C]

Gr:

Grashof number, Eq(l3)

Gra :

modified Grashof number, gβa3 ΔT/ν2

g:

gravitational acceleration [m/h2]

H:

wall cooling rate [°C/h]

k:

thermal conductivity of fluid [J/mh°C]

M, N:

number of divisions in r and Φ directions

Nu:

Nusselt number, Eq(6)

Nua :

dimensionless average wall heat flux, Eq(5)

(Nua)Φ :

dimensionless local wall heat flux

Pr:

Prandtl number

q:

average wall heat flux [J/m2h]

R:

radial coordinate [m]

r:

dimensionless radial coordinate, R/a

T:

temperature [°C]

Tb :

mixed mean temperature [°C]

Tw :

wall temperature [°C]

T0 :

uniform initial fluid temperature [°C]

t:

time [h]

U:

velocity in R direction [m/h]

u:

dimensionless velocity in r direction, aU/χ

V:

velocity in Φ direction [m/h]

v:

dimensionless velocity in Φ direction, aV/χ

β:

coefficient of thermal expansion [1/°C]

θ:

dimensionless temperature, (T-Tw)/ΔT

θb :

dimensionless mixed mean temperature, Eq.(6)

χ:

thermal diffusivity [m2/h]

ν:

Kinematic viscosity [m2/h]

ξ:

dimensionless vorticity, a2Ω/χ

ρ:

fluid density [kg/m3]

τ:

dimensionless time (Fourier number), χt/a2

Φ:

polar coordinate [radian]

Ψ:

stream function [m2/h]

ψ:

dimensionless stream function, ψ/χ

Ω:

vorticity [1/h]

ΔT:

characteristic temperature difference, a2h/χ [°C]

i,j:

indices of a grid point in r and Φ directions

k:

kth time step

References

  1. Quack, H.: Natural Convection inside a Horizontal Tube for Small Grashof Numbers. Wärme- und Stoffübertragung3 (1970) 134/138

    Google Scholar 

  2. Deaver, F.K.; Eckert, E.R.G.: An Interferometric Investigation of Convective Heat Transfer in a Horizontal Fluid Cylinder with Wall Temperature Increasing at a Uniform Rate. Heat Transfer 1970,4, Paper NC 1.1, Elsevier Publishing, Amsterdam

    Google Scholar 

  3. Hauf, W.; Grigull, U.: Instationärer Wärmeübergang durch freie Konvektion in horizontalen zylindrischen Behältern. Heat Transfer 1970,4, Paper NC 1.3, Elsevier Publishing, Amsterdam

    Google Scholar 

  4. Hauf, W.; Grigull, U.: Instationärer Wärmeübergang in horizontalen zylindrischen Behältern. Wärme- und Stoffübertragung8 1975) 57/68

    Google Scholar 

  5. Gilpin, R.R.: Cooling of a Horizontal Cylinder of Water Through its Maximum Density Point at 4°C. Int. J. Heat Mass Transfer18 (1975) 1307/1315

    Google Scholar 

  6. Carslaw, H.S.; Jaeger, J.C.: Conduction of Heat in Solids, 2nd Ed., Oxford Univ. Press (1959) 201

  7. Fujii, T.; Takeuchi, M.; Morioka, I.: Laminar Boundary Layer of Free Convection in a Temperature Stratified Environment. Heat Transfer 1974,3, 44/48, Japan Society of Mechanical Engineers

  8. Hong, S.W.; Morcos, S.M.; Bergles, A.E.: Analytical and Experimental Results for Combined Forced and Free Laminar Convection in Horizontal Tubes. Heat Transfer 1974,3, 154/158

    Google Scholar 

  9. Cheng, K.C.; Ou, J.W.: Free Convection Effects on Graetz Problem for Large Prandtl Number Fluids in Horizontal Tubes with Uniform Wall Heat Flux. Heat Transfer 1974,3, 159/163

    Google Scholar 

  10. Akiyama, M.; Cheng, K.C.: Laminar Forced Convection in the Thermal Entrance Region of Curved Pipes with Uniform Wall Temperature. Canadian J. Chemical Engineering52 (1974) 234/240

    Google Scholar 

  11. Tarbell, J.M.; Samuels, M.R.: Momentum and Heat Transfer in Helical Coils. Chemical Engineering Journal5 (1973) 117/127

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takeuchi, M., Cheng, K.C. Transient natural convection in horizontal cylinders with constant cooling rate. Wärme- und Stoffübertragung 9, 215–225 (1976). https://doi.org/10.1007/BF01003574

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01003574

Keywords

Navigation