Skip to main content
Log in

Towards an explanation of carboxylation/oxygenation bifunctionality in Rubisco. Transition structure for the carboxylation reaction of 2,3,4-pentanetriol

  • Published:
Molecular Engineering

Abstract

We construct a theoretical model of the transition structure for the carboxylation reaction of ribulose-1,5-biphosphate catalyzed by Rubisco. This is a first-order saddle point on the energy hypersurface for the nucleophilic attack of carbon dioxide on CH3-(CHOH)3-CH3 at the C2 center.Ab initio analytical gradients methods at a 4-31G basis set level are used.

The carbon framework and oxygens of the stationary structure superpose with the corresponding atoms of 2-carboxyarabinitol-1,5-biphosphate, which is a transition state analog that has recently been highly refined with X-ray methods. The hydroxyl group in C3 iscis to the C2 oxygen. The C3 center is somewhat pyramidized, the dienol O2-C2-C3-O3 is not planar.

The geometry of the transition state allows for simple explanations of both the enolization of Rubisco's substrate ribulose-1,5-biphosphate, O3PO-CH2-CO-(CHOH)2-CH2-OPO3 and oxygenation reaction. The former is due to the pyramidal deformation at C3 and out of plane of O2-C2-C3-O3 framework: the enoliation is intramolecular and is probably enhanced by proton tunnelling. The latter is related with the fact that a rotation around an ethylene-like bond brings the triplet state down in energy. The reactive skeleton has a stationary geometry in the triplet state not very different from the one obtained in the global transition structure. There, the triplet is only 9 kcal/mol above the singlet. The spin densities at C2 and C3 centers clearly indicate the place where oxygenation will take place.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Andersson, S. Knight, G. Schneider, Y. Lindqvist, T. Lundqvist, C.-I. Brändén, and G. H. Lorimer:Nature 337, 229–234 (1989).

    Google Scholar 

  2. I. Andersson, C.-I. Brändén, S. Knight, Y. Lindqvist, T. Lundqvist and G. Schneider: inProtein Structure-Function, A. Zaidi and F. Smith (Eds.), pp. 73–85, TWEL Pub., 1990.

  3. G. Schneider, I. Andersson, C.-I. Brändén, S. Knight, Y. Lindqvist and T. Lundqvist: inEnzymatic and Model Carboxylation and Reduction Reactions for Carbon Dioxide Utilization, M. Aresta and J. V. Schloss (Eds.), pp. 367–376, Kluwer, Dordrecht, 1990.

    Google Scholar 

  4. G. Schneider and T. Lundqvist:J. Biol. Chem. 264, 7078–7083 (1989).

    Google Scholar 

  5. T. Lundqvist and G. Schneider:J. Biol. Chem. 266, 12604–12611 (1991).

    Google Scholar 

  6. T. Lundqvist and G. Schneider:Biochemistry 30, 904–908 (1991).

    Google Scholar 

  7. T. J. Andrews and G. H. Lorimer: inThe Biochemistry of Plants, vol. 10, pp. 131–218 (1987).

    Google Scholar 

  8. G. Schneider, Y. Lindqvist, and C.-I. Brändén:Ann. Rev. Biophys. Biomol. Struct. 21, 119–142 (1992).

    Google Scholar 

  9. J. W. Mc Iver,Accounts of Chemical Research 7, 72 (1974).

    Google Scholar 

  10. D. G. Truhlar, W. L. Hase, and J. T. Hynes:J. Phys. Chem. 87, 2664 (1983).

    Google Scholar 

  11. O. Tapia and J. Andrés:Chem. Phys. Lett. 109, 471–477 (1984); J. Andrés, R. Cardenas, E. Silla and O. Tapia:J. Am. Chem. Soc. 110, 666 (1988).

    Google Scholar 

  12. M. J. D. Powell:VA05 Program, Harwell Subroutine Library. Atomic Energy Research Establishment, Harwell, UK.

  13. O. Tapia, R. Cardenas, J. Andrés, and F. Colonna-Cesari:J. Am. Chem. Soc. 110, 4046 (1988).

    Google Scholar 

  14. O. Tapia, R. Cardenas, J. Andrés, J. Krechl, M. Campillo and F. Colonna-Cesari,Int. J. Quantum Chem. 39, 767 (1991).

    Google Scholar 

  15. O. Jacob, R. Cardenas and O. Tapia:J. Am. Chem. Soc. 112, 8692 (1990).

    Google Scholar 

  16. O. Tapia, R. Cardenas and J. Andrés:Chem. Phys. Lett. (in press).

  17. M. R. Peterson and R. A. Poirier:Program MONSTERGAUSS, University of Toronto, Ontario, Canada, 1980.

    Google Scholar 

  18. L. Pauling:Nature (London)161, 707 (1948).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tapia, O., Andrés, J. Towards an explanation of carboxylation/oxygenation bifunctionality in Rubisco. Transition structure for the carboxylation reaction of 2,3,4-pentanetriol. Mol Eng 2, 37–41 (1992). https://doi.org/10.1007/BF00999521

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00999521

Key words

Navigation