Skip to main content
Log in

Lagrange approach to the optimal control of diffusions

  • Published:
Acta Applicandae Mathematica Aims and scope Submit manuscript

Abstract

A new approach to the optimal control of diffusion processes based on Lagrange functionals is presented. The method is conceptually and technically simpler than existing ones. A first class of functionals allows to obtain optimality conditions without any resort to stochastic calculus and functional analysis. A second class, which requires Ito's rule, allows to establish optimality in a larger class of problems. Calculations in these two methods are sometimes akin to those in minimum principles and in dynamic programming, but the thinking behind them is new. A few examples are worked out to illustrate the power and simplicity of this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bensoussan, A.: Variational methods in stochastic control, in S. K. Mitter and A. Moro (eds),Nonlinear Filtering and Stochastic Control, Lecture Notes in Mathematics 972, Springer-Verlag, Berlin, 1983.

    Google Scholar 

  2. Berkovitz, L. D.:Optimal Control Theory, Springer-Verlag, Berlin, 1974.

    Google Scholar 

  3. Bismut, J.-M.: Conjugate convex functions in optimal stochastic control,J. Math. Anal. Appl. 44 (1973), 384–404.

    Google Scholar 

  4. Bismut, J.-M.: An introductory approach to duality in optimal stochastic control,SIAM Rev. 20 (1978), 62–78.

    Google Scholar 

  5. Dai Pra, P.: A stochastic control approach to reciprocal diffusion processes,Appl. Math. Optim. 23 (1991), 313–329.

    Google Scholar 

  6. Dai Pra, P. and Pavon, M.: On the Markov processes of Schrödinger, the Feynman-Kac formula and stochastic control, in M. A. Kaashoek, J. van Schuppen, and A. C. M. Ran (eds),Realization and Modeling in System Theory, Birkäuser, Boston, 1990, pp. 497–504.

    Google Scholar 

  7. Davis, M. H. A. and Varaya, P. P.: Dynamic programming conditions for partially observed stochastic systems,SIAM J. Control Optim. 11 (1973), 226–261.

    Google Scholar 

  8. Dawson, D., Gorostiza, L. and Wakolbinger, A.: Schrödinger processes and large deviations,J. Math. Phys. 31 (1990), 2385–2388.

    Google Scholar 

  9. Elliot, R. J.: The optimal control of diffusions.Appl. Math. Optim. 22 (1990), 229–240.

    Google Scholar 

  10. Fleming, W. H.: Exit probabilities and optimal stochastic control,Appl. Math. Optim. 4 (1978), 329–346.

    Google Scholar 

  11. Fleming, W. H.: Logarithmic transformation and stochastic control, in W. H. Fleming and L. G. Gorostiza (eds),Advances in Filtering and Optimal Stochastic Control, Lecture Notes in Control and Information Sciences 42, Springer-Verlag, Berlin, 1982, pp. 131–141.

    Google Scholar 

  12. Fleming, W. H. and Rishel, R. W.:Deterministic and Stochastic Optimal Control, Springer-Verlag, Berlin, 1975.

    Google Scholar 

  13. Fleming W. H. and Vermes, D.: Convex duality approach to the optimal control of diffusions,SIAM J. Contr. Optim. 27 (1989), 1136–1155.

    Google Scholar 

  14. Guerra, F. and Morato, L.: Quantization of dynamical systems and stochastic control theory,Phys. Rev. D 27 (1983), 1771–1786.

    Google Scholar 

  15. Haussmann, U. G.: Some examples of optimal stochastic controls or: The stochastic maximum principle at work,SIAM Rev. 23 (1981), 292–307.

    Google Scholar 

  16. Haussmann, U. G.: Extremal controls for completely observable diffusions, in W. H. Fleming and L. G. Gorostiza (eds),Advances in Filtering and Optimal Stochastic Control, Lecture Notes in Control and Information Sciences 42, Springer-Verlag, Berlin, 1982, pp. 149–160.

    Google Scholar 

  17. Hewitt, E. and Stromberg, K.:Real and Abstract Analysis, Springer-Verlag, Berlin, 1969.

    Google Scholar 

  18. Holmes, R. B.:A Course on Optimization and Best Approximation, Lecture Notes in Mathematics 257, Springer-Verlag, Berlin, 1972.

    Google Scholar 

  19. Karatzas, I.: On a stochastic representation of the principal eigenvalue of a second-order differential equation,Stochastics 3 (1980), 305–321.

    Google Scholar 

  20. Karatzas, I. and Shreve, S.E.:Brownian Motion and Stochastic Calculus, Springer-Verlag, Berlin, 1987.

    Google Scholar 

  21. Karatzas, I.: Optimization problems in the theory of continuous trading,SIAM J. Control Optim. 27 (1989), 1221–1259.

    Google Scholar 

  22. Kosmol, I.:Optimierung und Approximation, De Gruyter Lehrbuch, Berlin, 1991.

  23. Kushner, H. J.: Necessary conditions for continuous parameter stochastic optimization problems,SIAM J. Control 10 (1972), 550–562.

    Google Scholar 

  24. Nagasawa, M.: Transformations of diffusions and Schrödinger processes,Probab. Theory Related Fields 82 (1989), 109–136.

    Google Scholar 

  25. Pavon, M.: Stochastic control and nonequilibrium thermodynamical systems,Appl. Math. Optim. 19 (1989), 187–202.

    Google Scholar 

  26. Pavon, M. and Wakolbinger, A.: On free energy, stochastic control, and Schrödinger processes, in G. B. Di Masi, A. Gombani and A. Kurzhanski (eds),Modeling, Estimation and Control of Systems with Uncertainty, Birkäuser, Boston, 1991, pp. 334–348.

    Google Scholar 

  27. Wakolbinger, A.: A simplified variational characterization of Schrödinger processes,J. Math. Phys. 30 (1989), 2943–2946.

    Google Scholar 

  28. Weierstrass, K.:Mathematische Werke von Karl Weierstrass, Siebenter Band, Vorlesungen über Variationsrechnung, Akademische Verlagsgesellschaft, Leipzig, 1927.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research performed at the Mathematisches Seminar der Universität Kiel with support provided by an Alexander von Humboldt Foundation fellowship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kosmol, P., Pavon, M. Lagrange approach to the optimal control of diffusions. Acta Appl Math 32, 101–122 (1993). https://doi.org/10.1007/BF00998149

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00998149

Mathematics Subject Classification (1991)

Key words

Navigation