Skip to main content
Log in

Optimal Control of Diffusion Processes with Terminal Constraint in Law

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

Stochastic optimal control problems with constraints on the probability distribution of the final output are considered. Necessary conditions for optimality in the form of a coupled system of partial differential equations involving a forward Fokker–Planck equation and a backward Hamilton–Jacobi–Bellman equation are proved using convex duality techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Achdou, Y., Capuzzo Dolcetta, I.: Mean field games: numerical methods. SIAM J. Numer. Anal. 48, 1136–1162 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alvarez, O., Lasry, J.-M., Lions, P.-L.: Convex viscosity solutions and state constraints. J. Math. Pures Appl. 76, 265–288 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs. Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  4. Ambrosio, L., Gigli, N., Savare, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures. Birkhäuser, Basel (2005)

    MATH  Google Scholar 

  5. Armstrong, S., Cardaliaguet, P.: Stochastic homogenization of quasilinear Hamilton–Jacobi equations and geometric motions. J. Eur. Math. Soc. 20, 797–864 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Barles, G.: A weak Bernstein method for fully nonlinear elliptic equations. Differ. Integral Equ. 4, 241–262 (1991)

    MathSciNet  MATH  Google Scholar 

  7. Benamou, J.-D., Brenier, Y.: A computational fluid mechanics solution to the Monge–Kantorovich mass transfer problem. Numer. Math. 84, 375–393 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Blaquière, A.: Controllability of a Fokker–Planck equation, the Schrödinger system, and a related stochastic optimal control. Dyn. Control 2, 235–253 (1992)

    Article  MATH  Google Scholar 

  9. Bouchard, B., Elie, R., Imbert, C.: Optimal control under stochastic target constraints. SIAM J. Control Optim. 48, 3501–3531 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bouchard, B., Elie, R., Touzi, N.: Stochastic target problems with controlled loss. SIAM J. Control Optim. 48, 3123–3150 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bourgoing, M.: C1, \(\beta \) regularity of viscosity solutions via a continuous-dependence result. Adv. Differ. Equ. 9, 447–480 (2004)

    MathSciNet  MATH  Google Scholar 

  12. Briani, A., Cardaliaguet, P.: Stable solutions in potential mean field game systems. Nonlinear Differ. Equ. Appl. 25, 1–26 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cardaliaguet, P., Graber, P.J., Porretta, A., Tonon, D.: Second order mean field games with degenerate diffusion and local coupling. Nonlinear Differ. Equ. Appl. 22, 1287–1317 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Carmona, R., Delarue, F.: Probabilistic Theory of Mean Field Games with Applications. I. Springer, Berlin (2018)

    Book  MATH  Google Scholar 

  15. Chow, Y.L., Yu, X., Zhou, C.: On dynamic programming principle for stochastic control under expectation constraints. J. Optim. Theory Appl. 185, 803–818 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  16. Crandall, M.G., Ishii, H., Lions, P.-L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. 27, 1–67 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ekeland, I., Témam, R.: Convex Analysis and Variational Problems. SIAM, Philadelphia (1999)

    Book  MATH  Google Scholar 

  18. El Karoui, N., Nguyen, D., Jeanblanc-Picqué, M.: Compactification methods in the control of degenerate diffusions: existence of an optimal control. Stochastics 20, 169–219 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  19. Figalli, A.: Existence and uniqueness of martingale solutions for SDEs with rough or degenerate coefficients. J. Funct. Anal. 254, 109–153 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fleming, W.H., Soner, H.M.: Controlled Markov Processes and Viscosity Solutions. Springer, New York (2006)

    MATH  Google Scholar 

  21. Fleming, W.H., Vermes, D.: Convex duality approach to the optimal control of diffusions. SIAM J. Control Optim. 27, 1136–1155 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  22. Föllmer, H., Leukert, P.: Quantile hedging. Finance Stoch. 3, 251–273 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Guo, I., Langrené, N., Loeper, G., Ning, W.: Portfolio optimization with a prescribed terminal wealth distribution. Quant. Finance 22, 333–347 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  24. Guo, I., Loeper, G., Wang, S.: Calibration of local-stochastic volatility models by optimal transport. Math Financ. 32(1), 46–77 (2022)

    Article  MathSciNet  Google Scholar 

  25. Imbert, C.: Convexity of solutions and C1, 1 estimates for fully nonlinear elliptic equations. J. Math. Pures Appl. 85, 791–807 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ishii, H., Lions, P.-L.: Viscosity solutions of fully nonlinear second-order elliptic partial differential equations. J. Differ. Equ. 83, 26–78 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  27. Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus. Springer, New York (1991)

    MATH  Google Scholar 

  28. Krylov, N.: Controlled Diffusion Processes. Springer, Berlin (1980)

    Book  MATH  Google Scholar 

  29. Lacker, D.: Mean field games via controlled martingale problems: existence of Markovian equilibria. Stoch. Process. Appl. 125, 2856–2894 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ladyženskaja, O., Solonnikov, V., Ural’ceva, N.: Linear and quasi-linear equations of parabolic type. In: Translations of Mathematical Monographs, vol. 23. American Mathematical Society, Providence, RI (1998)

  31. Lasry, J.-M., Lions, P.-L.: Mean field games. Jpn. J. Math. 2, 229–260 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lions, P.-L., Souganidis, P.: Homogenization of degenerate second-order PDE in periodic and almost periodic environments and applications. Annales De L Institut Henri Poincare-analyse Non Lineaire 22, 667–677 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Mikami, T.: Two end points marginal problem by stochastic optimal transportation. SIAM J. Control Optim. 53, 2449–2461 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Mikami, T., Thieullen, M.: Duality theorem for the stochastic optimal control problem. Stoch. Process. Appl. 116, 1815–1835 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. Milgrom, B.P., Segal, I.: Envelope theorems for arbitrary choice sets. Econometrica 70, 583–601 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  36. Orrieri, C., Porretta, A., Savaré, G.: A variational approach to the mean field planning problem. J. Funct. Anal. 277, 1868–1957 (2019)

  37. Pfeiffer, L.: Optimality conditions in variational form for non-linear constrained stochastic control problems. Math. Control Rel. Fields 10, 493–526 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  38. Pfeiffer, L., Tan, X., Zhou, Y.L.: Duality and approximation of stochastic optimal control problems under expectation constraints. SIAM J. Control Optim. 59, 3231–3260 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  39. Rachev, S.T., Rüschendorf, L.: Mass Transportation Problems—Volume 1: Theory. Springer, New York (1998)

    MATH  Google Scholar 

  40. Simons, S.: Minimax and Monoticity. Springer, Berlin (1998)

    Book  Google Scholar 

  41. Soner, H.M., Touzi, N.: Dynamic programming for stochastic target problems and geometric flows. J. Eur. Math. Soc. 4, 201–236 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  42. Stroock, D.W., Varadhan, S.R.S.: Multidimensional Diffusion Processes. Springer, Berlin (1997)

    MATH  Google Scholar 

  43. Tan, X., Touzi, N.: Optimal transportation under controlled stochastic dynamics. Ann. Probab. 41, 3201–3240 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  44. Trevisan, D.: Well-posedness of multidimensional diffusion processes with weakly differentiable coefficients. Electron. J. Probab. 21, 1–42 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  45. Villani, C.: Topics in optimal transportation. In: Graduate Studies in Mathematics, vol. 58. American Mathematical Society, Providence, RI (2003)

  46. Villani, C.: Optimal Transport Old and New. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  47. Wang, L.: On the regularity theory of fully nonlinear parabolic equations: I. Commun. Pure Appl. Math. 45, 27–76 (1992)

  48. Wang, L.: On the regularity theory of fully nonlinear parabolic equations: II. Commun. Pure Appl. Math. 45, 141–178 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  49. Yong, J., Zhou, X.Y.: Stochastic Controls—Hamiltonian Systems and HJB Equations. Springer, New York (1999)

    MATH  Google Scholar 

Download references

Acknowledgements

The author thanks the anonymous referees for their comments and careful proofreading of the paper. The author was partially supported by the ANR (Agence Nationale de la Recherche) project ANR-16-CE40-0015-01 on Mean Field Games. Part of this research was performed, while the author was visiting the Institute for Mathematical and Statistical Innovation (IMSI), which is supported by the National Science Foundation (Grant No. DMS-1929348). The author wishes to thank Professor Pierre Cardaliaguet (Paris Dauphine) for fruitful discussions all along this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Daudin.

Additional information

Communicated by Dylan Possamaï

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Since it appears twice in our article and in particular in the proof of Theorem 3.2, we recall the statement of the von Neumann theorem we are using. The statement and proof can be found in Appendix of [36] and in a slightly different setting, in [40].

Theorem A.1

(Von Neumann) Let \({\mathbb {A}}\) and \({\mathbb {B}}\) be convex sets of some vector spaces and suppose that \({\mathbb {B}}\) is endowed with some Hausdorff topology. Let \({\mathcal {L}}\) be a function satisfying:

$$\begin{aligned}&a \rightarrow {\mathcal {L}}(a,b) \hbox { is concave in }{\mathbb {A}} \hbox { for every }b \in {\mathbb {B}}, \\&b \rightarrow {\mathcal {L}}(a,b) \hbox { is convex in }{\mathbb {B}} \hbox { for every }a \in {\mathbb {A}}. \end{aligned}$$

Suppose also that there exist \(a_* \in {\mathbb {A}}\) and \(C_* > \sup _{a \in {\mathbb {A}} } \inf _{b \in {\mathbb {B}}} {\mathcal {L}}(a,b)\) such that:

$$\begin{aligned}&{\mathbb {B}}_*:= \left\{ b \in {\mathbb {B}}, {\mathcal {L}}(a_*,b) \le C_* \right\} \hbox { is not empty and compact in } {\mathbb {B}}, \\&b \rightarrow {\mathcal {L}}(a,b) \hbox { is lower-semicontinuous in } {\mathbb {B}}_* \hbox { for every } a \in {\mathbb {A}}. \end{aligned}$$

Then,

$$\begin{aligned} \min _{b\in {\mathbb {B}} } \sup _{a \in {\mathbb {A}} } {\mathcal {L}}(a,b) = \sup _{ a \in {\mathbb {A}} } \inf _{b \in {\mathbb {B}} } {\mathcal {L}}(a,b). \end{aligned}$$

Remark A.1

The fact that the infimum in the “\(\inf \sup \)” problem is in fact a minimum is part of the theorem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daudin, S. Optimal Control of Diffusion Processes with Terminal Constraint in Law. J Optim Theory Appl 195, 1–41 (2022). https://doi.org/10.1007/s10957-022-02053-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-022-02053-8

Keywords

Navigation