Skip to main content
Log in

Dichloroacetate increases glucose use and decreases lactate in developing rat brain

  • Original Contributions
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Dichloroacetate (DCA) activates pyruvate dehydrogenase (PDH) by inhibiting PDH kinase. Neutralized DCA (100 mg/kg) or saline was intravenously administered to 20 to 25-day-old rats (50–75 g). Fifteen minutes later a mixture of [6−14C]glucose and [3H]fluorodeoxyglucose (FDG) was administered intravenously and the animals were sacrificed by microwave irradiation (2450 MHz, 8.0 kW, 0.6–0.8 sec) after 2 or 5 min. Brain regional rates of glucose use and metabolite levels were determined. DCA-treated rats had increased rates of glucose use in all regions studied (cortex, thalamus, striatum, and brain stem), with an average increase of 41%. Lactate levels were lower in all regions, by an average of 35%. There were no significant changes in levels of ATP, creatine phosphate, or glycogen in any brain region. Blood levels of lactate did not differ significantly between the DCA- and the saline-treated groups. Blood glucose levels were higher in the DCA group. In rats sacrificed by freeze-blowing, DCA treatment caused lower brain levels of both lactate and pyruvate. These results cannot be explained by any systemic effect of DCA. Rather, it appears that in the immature rat, DCA treatment results in activation of brain PDH, increased metabolism of brain pyruvate and lactate, and a resulting increase in brain glycolytic rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DCA:

dichloroacetate

FDG:

fluorodeoxyglucose

PDHC:

pyruvate dehydrogenase complex

References

  • Abemayor, E., Kovachich, G. B., and Hangaard, N. (1984). Effects of dichloroacetate on brain pyruvate dehydrogenase.J. Neurochem. 42: 38–42.

    Google Scholar 

  • Atkinson, D. E. (1968). The energy charge of the adenylate pool as a regulatory parameter. Interaction with feed back modifiers.Biochemistry 7: 4030–4034.

    Google Scholar 

  • Baudry, M., Kessler, M., Smith, E. K., and Lynch, G. (1982). The regulation of pyruvate dehydrogenase activity in rat hippocampal slices: Effect of dichloroacetate.Neurosci. Lett. 31: 41–46.

    Google Scholar 

  • Biros, M. H., and Dimlich, R. V. W. (1987). Brain lactate during partial global ischemia and reperfusion.Am. J. Emerg. Med. 5: 271–277.

    Google Scholar 

  • Blomstrand, S., Hrbek, A., Karisson, K., Kjellmer, I., Lindecrantz, K., and Olsson, T. (1984). Does glucose administration affect the cerebral response to fetal asphyxia.Acta Obstet. Gynecol. Scand. 63: 345–353.

    Google Scholar 

  • Browning, M., Baudry, M., Bennett, W. F., and Lynch, G. (1981). Phosphorylation-mediated changes in pyruvate dehydrogenase activity influence pyruvate-supported calcium accumulation by brain mitochondria.J. Neurochem. 36: 1932–1940.

    Google Scholar 

  • Cardell, M., Koide, T., and Wieloch, T. (1989). Pyruvate dehydrogenase activity in the rat cerbral cortex following cerebral ischemia.J. Cereb. Blood Flow Metab. 9: 350–357.

    Google Scholar 

  • Colohan, A. R. T., Welsh, F. A., Miller, E. D., and Kassell, N. F. (1986). The effect of dichloroacetate on brain lactate levels following incomplete ischemia in the hyperglycemic rat.Stroke 17: 525–528.

    Google Scholar 

  • Crane, P. D., Pardridge, W. M., Braun, L. D., and Oldendorf, W. H. (1983). Kinetics of transport and phosphorylation of 2-fluoro-2-deoxy-D-glucose in rat brain.J. Neurochem. 40: 160–167.

    Google Scholar 

  • Cremer, J. E., Cunningham, V. J., Pardridge, W. M., Braun, L. D., and Oldendorf, W. H. (1979). Kinetics of blood-brain barrier transport of pyruvate, lactate and glucose in suckling, weanling and adult rats.J. Neurochem. 33: 439–445.

    Google Scholar 

  • Evans, D. B. (1983). Effects of dichloroacetate on brain tissue pyruvate dehydrogenase.J. Neurochem. 41: 1052–1056.

    Google Scholar 

  • Finney, M. A. (1964).Statistical Method in Biological Assay, Charles Griffin, London, pp. 27–29.

    Google Scholar 

  • Gardiner, M., Smith, M.-L., Kagstrom, E., Shohami, E., and Siesjo, B. K. (1982). Influence of blood glucose concentration on brain lactate accumulation during severe hypoxia and subsequent recovery of brain energy metabolism.J. Cereb. Blood Flow Metab. 2: 429–438.

    Google Scholar 

  • Goldberg, N. D., Passonneau, J. V., and Lowry, O. H. (1966). Effects of changes in brain metabolism on the levels of citric acid cycle intermediates.J. Biol. Chem. 241: 3997–4003.

    Google Scholar 

  • Hawkins, R. A., Mans, A. M., Davis, D. W., Vina, J. R., and Hibbard, L. S. (1985). Cerebral glucose use measured with [14C]glucose labeled in the 1, 2, or 6 position.Am. J. Physiol. 248: C170-C176.

    Google Scholar 

  • Hillered, L., Siesjo, B. K., and Arfors, K.-E. (1984a). Mitochondrial response to transient forebrain ischemia and recirculation in the rat.J. Cereb. Blood Flow Metab. 4: 438–446.

    Google Scholar 

  • Hillered, L., Ernster, L., and Siesjo, B. K. (1984b). Influence of in vitro lactic acidosis and hypercapnia on respiratory activity of isolated rat brain mitochondria.J. Cereb. Blood Flow Metab. 4: 430–437.

    Google Scholar 

  • Kalimo, H., Rehncrona, S., Soderfeldt, B., Olsson, Y., and Siesjo, B. K. (1981). Brain lactic acidosis and ischemic cell damage. 2. Histopathology.J. Cereb. Blood Flow Metab. 1: 313–327.

    Google Scholar 

  • Kaplan, J., Dimlich, R. V.-W., and Biros, M. H. (1987). Dichloroacetate treatment of ischemic cerebral lactic acidosis in the fed rat.Ann. Emerg. Med. 16(3): 298–304.

    Google Scholar 

  • Katayama, Y., and Welsh, F. A. (1989). Effect of dichloroacetate on regional energy metabolites and pyruvate dehydrogenase activity during ischemia and reperfusion in gerbil brain.J. Neurochem. 52: 1817–1822.

    Google Scholar 

  • Kuroda, Y., Toshima, K., Watanabe, T., Kobashi, H., Ito, M., Takeda, E., and Miyao, M. (1984). Effects of dichloroacetate on pyruvate metabolism in rat brain in vivo.Pediat. Res. 18: 936–938.

    Google Scholar 

  • Lowry, O. H., and Passonneau, J. V. (1972).A Flexible System of Enzymatic Analysis, Academic Press, New York, pp. 1–291.

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951). Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193: 265–275.

    Google Scholar 

  • Miller, A. L. (1986). Regional glucose and hydroxybutyrate use by developing rat brain.Metab. Brain Dis. 1: 53–61.

    Google Scholar 

  • Miller, A. L., and Corddry, D. H. (1981). Brain carbohydrate metabolism in developing rats during hypercapnia.J. Neurochem. 36: 1202–1210.

    Google Scholar 

  • Miller, A. L., and Kiney, C. A. (1981). Metabolism of [14C]fluorodeoxyglucose by rat brain in vivo.Life Sci. 28: 2071–2076.

    Google Scholar 

  • Miller, A. L., Shamban, A. T., Corddry, D. H., and Kiney, C. A. (1982). Cerebral metabolic responses to electroconvulsive shock and their modification by hypercapnia.J. Neurochem. 38: 916–924.

    Google Scholar 

  • Myers, R. E. (1976). Anoxic brain pathology and blood glucose.Neurology 26: 345–345.

    Google Scholar 

  • Plum, F., Cooper, A. J. L., Kraig, R. P., Petito, C. K., and Pulsinelli, W. A. (1985). Glial cells: The silent partners of the working brain. The Thomas E. Duffy Memorial Lecture.J. Cereb. Blood Flow Metab. 5 (Suppl. 1): S1-S4.

    Google Scholar 

  • Pulsinelli, W. A., Levy, D. E., Sigsbee, B., Scherer, P., and Plum, F. (1983). Increased damage after ischemic stroke in patients with hyperglycemia with or without established diabetes mellitus.Am. J. Med. 74: 540–544.

    Google Scholar 

  • Rehncrona, S., Rosen, I., and Siesjo, B. K. (1981). Brain lactic acidosis and ischemic cell damage. 1. Biochemistry and neurophysiology.J. Cereb. Blood Flow Metab. 1: 297–311.

    Google Scholar 

  • Schaffer, W. T., and Olson, M. S. (1980). The regulation of pyruvate oxidation during membrane depolarization of rat brain synaptosomes.Biochem. J. 192: 741–751.

    Google Scholar 

  • Siesjo, B. K. (1984). Cerebral circulation and metabolism.J. Neurosurg. 60: 883–908.

    Google Scholar 

  • Veech, R. L., Harris, R. L., Veloso, D., and Veech, E. H. (1973). Freeze-blowing: A new technique for the study of brain in vivo.J. Neurochem. 20: 183–188.

    Google Scholar 

  • Wells, P. G., Moore, G. W., Rabin, D., Wilkinson, G. R., Oates, J. A., and Stacpoole, P. W. (1980). Metabolic effects and pharmacokinetics of intravenously administered dichloroacetate in humans.Diabetologia 19: 109–113.

    Google Scholar 

  • Whitehouse, S., Cooper, R. H., and Randle, P. J. (1974). Mechanism of activation of pyruvate dehydrogenase by dichloroacetate and other halogenated carboxylic acids.Biochem. J. 141: 761–764.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, A.L., Hatch, J.P. & Prihoda, T.J. Dichloroacetate increases glucose use and decreases lactate in developing rat brain. Metab Brain Dis 5, 195–204 (1990). https://doi.org/10.1007/BF00997073

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00997073

Key words

Navigation