Skip to main content
Log in

Long-term observations in gerbil brain following transient cerebral ischemia: Autoradiographic and histological study

  • Original Contributions
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

We investigated the long-term changes that occur in the gerbil brain following transient cerebral ischemia using histology and receptor autoradiography. Transient ischemia was induced for 3 and 10 min, and animals were allowed to survive for 8 months. A histological study showed that 3-min ischemia caused neuronal damage and mild atrophy only in the hippocampal CA1 sector, and that 10-min ischemia produced severe neuronal damage and marked shrinkage in the hippocampal CA1 and CA3 sectors. Furthermore, severe neuronal damage was seen in the striatum after 10-min ischemia. Autoradiography study revealed that 3-min ischemia caused a significant reduction in [3H] naloxone binding in the frontal cortex, striatum, dentate gyrus, and thalamus, whereas [3H]SCH 23390 and [3H] forskolin binding was not significantly altered in all regions, In contrast, 10-min ischemia produced marked alteration in these binding sites in the striatum, hippocampus, thalamus, and substantia nigra. The alteration was especially notable in the hippocampal region and substantia nigra. These results indicate that hippocampal damage after transient ischemia, compared with that in other regions, is not static, but particularly progressive. Furthermore, they demonstrate a reduction in adenylate cyclase system in the striatum and substantia nigra after transient ischemia. Moreover, our results suggest that long-term survival after ischemia may induce synaptic modification of neurotransmitter and adenylate cyclase system in the hippocampus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Araki, T., Kato, H. and Kogure, K. (1989). Selective neuronal vulnerability following transient cerebral ischemia in the gerbils: distribution and time course.Acta. Neurol. Scand. 80:548–553.

    Google Scholar 

  • Araki, T., Kato, H. and Kogure, K. (1990). Neuronal damage and calcium accumulation following repeated brief cerebral ischemia in the gerbil.Brain Res. 528:114–122.

    Google Scholar 

  • Araki, T., Kato, H. and Kogure, K. (1991a). Alteration of second messenger systems after transient cerebral ischemia in gerbils: protective effect of pentobarbital and an autoradiographic analysis.Neurosci. Lett. 130:57–60.

    Google Scholar 

  • Araki, T., Kato, H., Hara, H. and Kogure, K. (1991b). Postischemic alteration of [3H] forskolin binding sites in selectively vulnerable areas: an autoradiographic study of gerbil brain.Neurosci. Lett. 125:159–162.

    Google Scholar 

  • Araki, T., Kato, H., Kogure, K. and Saito, T. (1991c). Postischemic alteration of muscarinic acetylcholine, adenosine A1 and calcium antagonist binding sites in selectively vulnerable areas: an autoradiographic study of gerbil brain.J. Neurol. Sci. 106:206–212.

    Google Scholar 

  • Benfenati, F., Merlo Pich, E., Grimalide, R., Zoli, M., Fuxe, K., Toffano, G. and Agnati, L.F. (1989). Transient forebrain ischemia produces multiple deficits in dopamine D1 transmission in the lateral neostriatum of the rat.Brain Res. 498:376–380.

    Google Scholar 

  • Benfenati, F., Merlo Pich, E., Zoli, M., Grimalde, R., Fuxe, K. and Agnati, L.F. (1991). Changes in striatal μ and S opioid receptors after transient forebrain ischemia: a quantitative autoradiographic study.Brain Res. 546:171–175.

    Google Scholar 

  • Bloom, F., Segal, D., Ling, N. and Guillemin, R. (1976). Endorphins: profound behavioral effects in rats suggest new etiological factors in mental illness.Science 194:630–632.

    Google Scholar 

  • Childers, S.R. (1991). Opioid receptor-coupled second messenger systems.Life Sci. 48:1991–2003.

    Google Scholar 

  • Crain, B. J., Wasterkam, W.D., Harrison, A.H. and Nadler, J.V. (1988). Selective neuronal death after transient forebrain ischemia in the Mongolian gerbil: a silver impregnation study.Neuroscience 27:387–402.

    Google Scholar 

  • Dawson, T.M., Gehlert, D.R., Yamamura, H.I., Barnett, H. and Wamsley, J.K. (1985). D-1 dopamine receptors in the rat brain: autoradiographic localization using [3H]SCH 23390.Eur. J.Pharmacol. 108:323–325.

    Google Scholar 

  • Dawson, T.M., Gehlert, D.R., McCabe, R.T., Barnett, A., and Wamsley, J.K. (1986). D-1 dopamine receptors in the rat brain: a quantitative autoradiographic analysis.J. Neurosci. 6:2352–2365.

    Google Scholar 

  • Gehlert, D.R., Dawson, T.D., Yamamura, H.I. and Wamsley, J.K. (1985). Quantitative autoradiography of [3H] forskolin binding sites in the rat brain.Brain Res. 361:351–360.

    Google Scholar 

  • Harik, S.I., Yoshida, S., Busto, R. and Ginsberg, M.D. (1986). Monoamine neurotransmitters in diffuse reversible forebrain ischemia and early recirculation: increased dopaminergic activity.Neurology 36:971–976.

    Google Scholar 

  • Herkenham, M. and Pert, C.B. (1982). Light microscopic localization of brain opiate receptors: a general autoradiographic method which preserves tissue quality.J. Neurosci. 2:1129–1149.

    Google Scholar 

  • Holaday, J.W., Loh, H.H. and Li, C.H. (1978). Unique behavioral effects of ß-endorphin and their relationship to thermoregulation and hypothalamic function.Life Sci. 22:1525–1536.

    Google Scholar 

  • Iorio, L.C., Barnett, A., Leitz, F.H., Houser, V.P. and Korduba, C.A. (1983). SCH 23390, a potential benzazepine antipsychotic with unique interactions on dopaminergic systems.J. Pharmacol. Exp. Ther. 226:462–468.

    Google Scholar 

  • Jorgensen, M.B., Deckert, J. and Wright, D.C. (1989). Binding of [3H] inositoltrisphosphate and [3H] phorbol 12, 13-dibutyrate in rat hippocampus following transient global ischemia: a quantitative autoradiographic study.Neurosci. Lett. 103:219–224.

    Google Scholar 

  • Kebabian, J.W. and Calne, D.B. (1979). Multiple receptors for dopamine.Nature 277:93–96.

    Google Scholar 

  • Loskota, W.J., Lomax, P. and Verity, M.A. (1974). A stereotaxic atlas of the Mongolian gerbil brain. Ann Arbor Science, Michigan, USA.

  • Memo, M., Missale, C., Carruba, M.O. and Spano, P.F. (1986). D2 dopamine receptors associated with inhibition of dopamine release from rat neostriatum are independent of cyclic AMP.Neurosci. Lett. 71:192–196.

    Google Scholar 

  • Ohno, Y., Sasa, M. and Takaori, S. (1987). Coexistence of inhibitory dopamine D-1 and excitatory D-2 receptors on the same caudate nucleus neurons.Life Sci. 40:1937–1945.

    Google Scholar 

  • Onodera, H., Araki, T. and Kogure, K., (1989). Protein kinase C activity in the rat hippocampus after forebrain ischemia: autoradiographic analysis by [3H] phorbol 12, 13-dibutyrate.Brain Res. 481:1–7.

    Google Scholar 

  • Onodera, H., Aoki, H., Yae, T. and Kogure, K. (1990). Postischemic synaptic plasticity in the rat hippocampus after long-term survival: histological and autoradiographic study.Neuroscience 38:125–136.

    Google Scholar 

  • Pulsinelli, W. A., Brierley, J.B. and Plum, F. (1982). Temporal profile of neuronal damage in a model of transient forebrain ischemia.Ann. Neurol. 11:491–498.

    Google Scholar 

  • Seamon, K.B., and Daly, J.W. (1981). Activation of adenylate cyclase by the diterpene forskolin does not require the guanine nucleotide regulator protein.J. Biol. Chem. 256:9799–9801.

    Google Scholar 

  • Stoof, J.C. and Kebabian, J.W. (1981). Opposing roles for D-1 and D-2 dopamine receptors in efflux of cyclic AMP from rat neostriatum.Nature 294:366–368.

    Google Scholar 

  • Stoof, J.C. and Kebabian, J.W. (1984). Two dopamine receptors: biochemistry, physiology, and pharmacology.Life Sci. 35:2281–2296.

    Google Scholar 

  • Urosevic, A. and Gundlach, A.L. (1988). Differential localization of particulate cAMP binding proteins and forskolin-sensitive adenylate cyclase in rat brain.Eur. J. Pharmacol. 146:355–357.

    Google Scholar 

  • Wieloch, T., Cardell, M., Bingren, H., Zivin, J. and Saitoh, T. (1991). Changes in the activity of protein kinase C and the differential subcellular redistribution of its isozymes in the rat striatum during and following transient cerebral forebrain ischemia.J. Neurochem. 56:1227–1235.

    Google Scholar 

  • Woo, S.K., Tulunary, F.C., Loh, H.H. and Lee, N.M. (1983). Effect of dynorphin 1–13 and related peptide on respiratory rate and morphine-induced respiratory are depression.Eur. J. Pharmacol. 96:117–122.

    Google Scholar 

  • Worley, P.F., Baraban, J.M., Souza, E.B. and Snyder, S.H. (1986). Mapping second messenger systems in the brain: differential localizations of adenylate cyclase and protein kinase C.Proc. Natl. Acad. Sci. USA 83:4053–4057.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Araki, T., Kato, H., Kanai, Y. et al. Long-term observations in gerbil brain following transient cerebral ischemia: Autoradiographic and histological study. Metab Brain Dis 8, 181–195 (1993). https://doi.org/10.1007/BF00996929

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00996929

Key words

Navigation