Skip to main content
Log in

Asymmetric structure of five and six membered DNA hairpin loops

  • Research Articles
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The tertiary structure of nucleic acid hairpins was elucidated by means of the accessibility of the single-strand-specific nuclease from mung bean. This molecular probe has proven especially useful in determining details of the structural arrangement of the nucleotides within a loop. In this study 3'-labeling is introduced to complement previously used 5'-labeling in order to assess and to exclude possible artifacts of the method. Both labeling procedures result in mutually consistent cleavage patterns. Therefore, methodological artifacts can be excluded and the potential of the nuclease as structural probe is increased. DNA hairpins with five and six membered loops reveal an asymmetric loop structure with a sharp bend of the phosphate-ribose backbone between the second and third nucleotide on the 3'-side of a loop. These hairpin structures differ from smaller loops with 3 or 4 members, which reveal this type of bend between the first and second 3' nucleotide, and resemble with respect to the asymmetry anticodon loops of tRNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

The hairpin oligonucleotides are indicated by hp:

hairpin followed by the loop sequence, starting at the 5'-end, in parenthesis; d for deoxy is omitted for clarity

References

  1. Lilley DMJ (1982) in Neidle S [Ed] Topics in nucleic acid structure, vol. 2 (pp. 173–198) Mcmillan, London

    Google Scholar 

  2. Kuhn H & Waser J (1981) Angew. Chem., Int. Ed. Engl. 20: 500–520

    Google Scholar 

  3. van de Ven FJM & Hilbers CW (1988) Eur. J. Biochem. 178: 1–38

    Google Scholar 

  4. Gralla J & Crothers DM (1973) J. Mol. Biol. 73: 497–511

    Google Scholar 

  5. Haasnoot CAG, de Bruin SH, Berendsen RG, Janssen HGJM, Binnendijk TJJ, Hilbers CW, van der Marel GA & van Boom JH (1983) J. Biomol. Struct. Dyn. I: 115–129

    Google Scholar 

  6. Uhlenbeck OC, Borer PN, Dengler B & Tinoco I Jr (1973) J. Mol. Biol. 73: 483–496

    Google Scholar 

  7. Baumann U, Frank R & Blöcker H (1986) Eur. J. Biochem. 161: 409–413

    Google Scholar 

  8. Xodo LE, Manzini G, Quadrifoglio F, van der Marel G & van Boom JH (1991) Nucl. Acids Res. 19: 1505–1511

    Google Scholar 

  9. Kinjo M, Hasegawa T, Nagano K, Ishikura H & Ishigami M (1986) J. Mol. Evol. 23: 320–327

    Google Scholar 

  10. Drew HR (1984) J. Mol. Biol. 176: 535–557

    Google Scholar 

  11. Vournakis JN, Celantano J, Finn M, Lockard RE, Mitra T, Pavlakis G, Troutt A, van den Berg M & Wurst RM (1981) in Chirikjian JG & Papas TS [Eds] Gene amplification and analysis, vol. 2 (pp. 267–298) Elsevier North Holland, New York

    Google Scholar 

  12. Göringer H-U, Szymkowiak C & Wagner R (1984) Eur. J. Biochem. 144: 25–34

    Google Scholar 

  13. Wells RD et al. (1977) Crit. Rev. Biochem. 4: 305–340

    Google Scholar 

  14. Bacolla A & Wu FY-H (1991) Nucl. Acids Res. 19: 1639–1647

    Google Scholar 

  15. Szafranski P & Godson GN (1990) Gene 88: 141–147

    Google Scholar 

  16. Laskowski Sr M (1980) Methods Enzymol. 65: 263–275

    Google Scholar 

  17. Green MR & Roeder RG (1980) Cell 22: 231–242

    Google Scholar 

  18. Baumann U, Fischer W & Spinzl M (1985) Eur. J. Biochem. 152: 645–649

    Google Scholar 

  19. Sundquist WI & Klug A (1989) Nature 342: 825–829

    Google Scholar 

  20. Rich A & RajBhandary UL (1976) Ann. Rev. Biochem. 45: 805–860

    Google Scholar 

  21. Moras D, Comarmond MB, Fischer J, Weiss R, Thierry JC, Ebel JP & Giege R (1980) Nature 288: 669–674

    Google Scholar 

  22. Wrede P, Woo NH & Rich A (1979) Proc. Natl Acad. Sci. 76: 3289–3293

    Google Scholar 

  23. Baumann U, Lehmann U, Schwellnus K, van Boom JH & Kuhn H (1987) Eur. J. Biochem. 170: 267–272

    Google Scholar 

  24. Haasnoot CAG, Hilbers CW, van der Marel GA, van Boom JH, Singh UC, Pattabiranam N & Kollman PA (1986) J. Biomol. Struct. Dyn. 3: 843–857

    Google Scholar 

  25. Blommers, MJJ, van de Ven FJM, van der Marel GA, van Boom JH & Hilbers CW (1991) Eur. J. Biochem. 201: 33–51

    Google Scholar 

  26. Senior MM, Jones RA & Breslauer KJ (1988) Proc. Natl Acad. Sci. 85: 6242–6246

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baumann, U., Chang, S. Asymmetric structure of five and six membered DNA hairpin loops. Mol Biol Rep 22, 25–31 (1995). https://doi.org/10.1007/BF00996301

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00996301

Key words

Navigation