Skip to main content
Log in

Differences in effects of sultopride and sulpiride on dopamine turnover in rat brain

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Sultopride and sulpiride are both chemically similar benzamide derivatives and selective antagonists of dopamine D2 receptors. However, these drugs differ in clinical properties. We compared the effects of sultopride and sulpiride on dopamine turnover in rats following the administration of these drugs alone or in combination with apomorphine. The administration of sultopride or sulpiride markedly accelerated dopamine turnover in the rat brain. The increase in the level of dopamine metabolites in the striatum was more marked in the sultopride-treated rats. Sulpiride affected the limbic dopamine receptors preferentially, whereas sultopride affected the striatal and the limoic dopamine receptors equally. A low dose of apomorphine induced a reduction in the concentration of dopamine metabolites in the striatum and the nucleus accumbens by approximately 55%, but not in the medial prefrontal cortex. Sultopride was more effective in preventing an apomorphine-induced reduction in dopamine metabolite levels. These results from rat experiments would model the pharmacological differences observed between sultopride and sulpiride in clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Delay, J., Deniker, P., and Harl, J.-M. 1952. Traitement des etats d'excitation et d'agitation par une methode medicamenteuse derivee de I'hibernotherapie. Ann. Med.-Psychol. 110 (pt.2):267–273.

    Google Scholar 

  2. Carlsson, A., and Lindqvist, M. 1963. Effect of chlorpromazine or haloperidol on formation of 3-methoxytyramine and normetanephrine in mouse brain. Acta. Pharmacol. Toxicol. 20:140–144.

    Google Scholar 

  3. Giros, B., Sokoloff, P., Martres, M. P., Riou, J. F., Emorine, L. J., and Schwartz, J. C. 1989. Alternative splicing directs the expression of two D2 dopamine receptor isoforms. Nature 342:923–926.

    Google Scholar 

  4. Jenner, P., and Marsden, C. D. 1979. Minireview: The substituted benzamides — a novel class of dopamine antagonists. Life Sci. 25:479–486.

    Google Scholar 

  5. Kebabian, J. W., and Calne, D. B. 1979. Multiple receptors for dopamine. Nature 277:93–96.

    Google Scholar 

  6. Jenner, P., Elliott, P. N. C., Clow, A., Reavill, C., and Marsden, C. D. 1978. A comparison of in vitro and in vivo dopamine receptor antagonism produced by substituted benzamide drugs. J. Pharm. Pharmacol. 30:46–48.

    Google Scholar 

  7. Edwards, J. G., Alexander, J. R., Alexander, M. S., Gordon, A., and Zuchti, T. 1980. Controlled trial of sulpiride in chronic schizophrenic patients. Br. J. Psychiat. 137:522–529.

    Google Scholar 

  8. Kawamura, J., Fukuyama, H., and Matsubayashi, K. 1979. Clinical improvement of L-dopa-induced oral dyskinesias with sulpiride. Neurol. Med. 11:444–447. (in Japanese).

    Google Scholar 

  9. Kobayashi, K., Imazu, Y., Sakurai, H., Kawabata, M., and Shohmori, T. 1985. Effect of sulpiride on levodopa-induced dyskinesias. Neurosciences (Kobe) 11:309–314.

    Google Scholar 

  10. Jenner, P., and Marsden, C. D. 1979. The mechanism of action of substituted benzamide drugs. pages 119–147, In: Spano, P. F., Trabucchi, M., Corsini, G. U., and Gessa, G. L. (eds.), Sulpiride and other benzamides. Raven Press, New York.

    Google Scholar 

  11. Paxinos, G., and Watson, C. 1982. The rat brain in stereotaxic coordinates. Academic Press, New York.

    Google Scholar 

  12. Westerink, B. H. C., and Korf, J. 1977. Rapid concurrent automated fluorimetric assay of noradrenaline, dopamine, 3,4-dihydroxyphenylacetic acid, homovanillic acid and 3-methoxytyramine in milligram amounts of nervous tissue after isolation on Sephadex G10. J. Neurochem. 29:697–706.

    Google Scholar 

  13. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  14. Nowycky, M. C., and Roth, R. H. 1978. Dopaminergic neurons: role of presynaptic receptors in the regulation of transmitter biosynthesis. Prog. Neuro-Psychopharmac. 2:139–158.

    Google Scholar 

  15. Westfall, T. C., Besson, M.-J., Giorguieff, M.-F., and Glowinski, J. 1976. The role of presynaptic receptors in the release and synthesis of3H-dopamine by slices of rat striatum. Naunyn-Schmiedeberg's Arch. Pharmacol. 292:279–287.

    Google Scholar 

  16. Roth, R. H. 1979. Dopamine autoreceptors: pharmacology, function and comparison with post-synaptic dopamine receptors. Commun. Psychopharmacol. 3:429–445.

    Google Scholar 

  17. Skirboll, L. R., Grace, A. A., and Bunney, B. S. 1979. Dopamine auto- and postsynaptic receptors: electrophysiological evidence for differential sensitivity to dopamine agonists. Science 206:80–82.

    Google Scholar 

  18. Di Chiara, G., Porceddu, M. L., Vargiu, L., Argiolas, A., and Gessa, G. L. 1976. Evidence for dopamine receptors mediating sedation in the mouse brain. Nature 264:564–567.

    Google Scholar 

  19. Hasan, F., and Leonard, B. E. 1981. Studies on the action of (±)sulpiride on dopamine receptors in the rat brain in vivo. Neuropharmacology 20:1327–1330.

    Google Scholar 

  20. Bannon, M. J., Michaud, R. L., and Roth, R. H., 1981. Mesocortical dopamine neurons lack of autoreceptors modulating dopamine synthesis. Mol. Pharmacol. 19:270–275.

    Google Scholar 

  21. Walters, J. R., and Roth, R. H. 1976. Dopaminergic neurons: an in vivo system for measuring drug interactions with presynaptic receptors. Naunyn-Schmiedeberg's Arch. Pharmacol. 296:5–14.

    Google Scholar 

  22. Ålander, T., Andén, N.-E., and Grabowska-Andén, M. 1980. Metoclopramide and sulpiride as selective blocking agents of pre-and postsynaptic dopamine receptors. Naunyn-Schmiedenberg's Arch. Pharmacol. 312:145–150.

    Google Scholar 

  23. Roth, R. H., Bacopoulos, N. G., Bustos, G., and Redmond, Jr. D. E. 1980. Antipsychotic drugs: differential effects on dopamine neurons in basal ganglia and mesocortex following chronic administration in human and nonhuman primates. pages 513–520,in Cattabeni et al. (eds.), Long-term effects of neuroleptics. Raven Press, New York.

    Google Scholar 

  24. Bartholini, G. 1976. Differential effect of neuroleptic drugs on dopamine turnover in the extrapyramidal and limbic system. J. Pharm. Pharmacol. 28:429–433.

    Google Scholar 

  25. Bischoff, S. 1992. Limbic selective neuroleptics. Clin. Neuropharm. 15(Suppl. 1, Pt.A):265–266.

    Google Scholar 

  26. Mizuchi, A., Kitagawa, N., and Miyachi, Y. 1983. Regional distribution of sultopride and sulpiride in rat brain measured by radioimmunoassay. Psychopharmacology 81:195–198.

    Google Scholar 

  27. Sokoloff, P., Giros, B., Martres, M. P., Bouthenet, M. L., and Schwartz, J. C. 1990. Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature 347:146–151.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moriuchi, K., Imazu, Y. & Yoneda, H. Differences in effects of sultopride and sulpiride on dopamine turnover in rat brain. Neurochem Res 20, 95–99 (1995). https://doi.org/10.1007/BF00995158

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00995158

Key Words

Navigation